HIKROBOT

ID3000 系列智能读码器 用户手册 版权所有©杭州海康机器人技术有限公司 2021。保留一切权利。

本手册的任何部分,包括文字、图片、图形等均归属于杭州海康机器人技术有限公司或其关联公司(以下简称"海康机器人")。未经书面许可,任何单位或个人不得以任何方式摘录、复制、翻译、修改本手册的全部或部分。除非另有约定,海康机器人不对本手册提供任何明示或默示的声明或保证。

关于本产品

本手册描述的产品仅供中国大陆地区销售和使用。本产品只能在购买地所在国家或地区享受售后服务及维保方案。

关于本手册

本手册仅作为相关产品的指导说明,可能与实际产品存在差异,请以实物为准。因产品版本升级或其他需要,海康机器人可能对本手册进行更新,如您需要最新版手册,请您登录海康机器人官网查阅(www.hikrobotics.com)。

海康机器人建议您在专业人员的指导下使用本手册。

商标声明

- **HIKROBOT** 为海康机器人的注册商标。
- 本手册涉及的其他商标由其所有人各自拥有。

责任声明

- 在法律允许的最大范围内,本手册以及所描述的产品(包含其硬件、软件、固件等)均"按照现状"提供,可能存在瑕疵或错误。海康机器人不提供任何形式的明示或默示保证,包括但不限于适销性、质量满意度、适合特定目的等保证;亦不对使用本手册或使用海康机器人产品导致的任何特殊、附带、偶然或间接的损害进行赔偿,包括但不限于商业利润损失、系统故障、数据或文档丢失产生的损失。
- 您知悉互联网的开放性特点,您将产品接入互联网可能存在网络攻击、黑客攻击、病毒感染等风险,海康机器人不对因此造成的产品工作异常、信息泄露等问题承担责任,但海康机器人将及时为您提供产品相关技术支持。
- 使用本产品时,请您严格遵循适用的法律法规,避免侵犯第三方权利,包括但不限于公开权、知识产权、数据权利或其他隐私权。您亦不得将本产品用于大规模杀伤性武器、生化武器、核爆炸或任何不安全的核能利用或侵犯人权的用途。
- 如本手册所涉数据可能因环境等因素而产品差异,本公司不承担由此产生的后果。
- 如本手册内容与适用的法律相冲突,则以法律规定为准。

前言

本节内容的目的是确保用户通过本手册能够正确使用产品,以避免操作中的危险或财产损失。在使用此产品之前,请认真阅读产品手册并妥善保存以备日后参考。

资料获取

访问本公司网站(www.hikrobotics.com)获取说明书、应用工具和开发资料。

概述

本手册适用于 ID3000 系列智能读码器。

符号约定

对于文档中出现的符号,说明如下所示。

符号	说明	
<mark>道</mark> 说明	说明类文字,表示对正文的补充和解释。	
注意	注意类文字,表示提醒用户一些重要的操作或者防范潜在的伤害和财产损失危险。	
全 警告	警告类文字,表示有潜在风险,如果不加避免,有可能造成伤害事故、设备损坏或业务中断。	
企 危险	危险类文字,表示有高度潜在风险,如果不加避免,有可能造成 人员伤亡的重大危险。	

安全使用注意事项

擎牛

- 产品安装使用过程中,必须严格遵守国家和使用地区的各项电气安全规定。
- 请使用正规厂家提供的电源适配器,电源适配器具体要求请参见产品参数表。
- 为减少火灾或电击危险,请勿让产品受到雨淋或受潮。
- 在使用环境中安装时,请确保产品固定牢固。

● 如果产品工作不正常,请联系最近的服务中心,不要以任何方式拆卸或修改产品。 (对未经认可的修改或维修导致的问题,本公司不承担任何责任)。

注章

- 避免将产品安装到振动或冲击环境,并使产品远离电磁干扰的地点。(忽视此项可能 会损坏产品)。
- 请勿直接触碰产品散热部件,以免烫伤。
- 室内产品请勿安装在可能淋到水或其他液体的环境。
- 请勿在极热、极冷、多尘、腐蚀或者高湿度的环境下使用产品,具体温、湿度要求 参见产品的参数表。
- 避免将镜头对准强光(如灯光照明、太阳光或激光束等),否则会损坏图像传感器。
- 请勿直接触碰到图像传感器,若有必要清洁,请将柔软的干净布用酒精稍微湿润, 轻轻拭去尘污; 当产品不使用时, 请将防尘盖加上, 以保护图像传感器。
- 请妥善保存设备的全部原包装材料,以便出现问题时,使用包装材料将设备包装 好,寄到代理商或返回厂家处理。非原包装材料导致的运输途中的意外损坏,本公 司不承担任何责任。

● 对安装和维修人员的素质要求:

具有从事弱电系统安装、维修的资格证书或经历,并有从事相关工作的经验和资 格,此外还必须具有如下的知识和操作技能。

- 具有低压布线和低压电子线路接线的基础知识和操作技能。
- 具有读懂本手册内容的能力。

目 录

第1章 产	品简介1
1.1	产品说明1
1.2	主要特性1
1.3	产品外观介绍1
1.4	接口介绍与定义
1.5	安装配套5
第2章 设	备安装与调试
2.1	设备安装
2.2	PC 网络配置
2.3	客户端安装
2.4	设备 IP 配置
2.5	客户端操作8
第3章 功	能描述12
3.1	相机连接12
3.2	运行模式16
3.3	镜头调焦16
	3.3.1 一次自动调焦16
	3.3.2 手动调焦17
3.4	图像配置18
	3.4.1 图像
	3.4.2 曝光
	3.4.3 增益20
	3.4.4 轮询21
	3.4.5 光源25
	3.4.6 自适应调节27
	3.4.7 其他参数28
3.5	算法配置29
	3.5.1 添加条码29

ID3000 系列智能读码器 • 用户手册

3.5.2 算法 ROI	31
3.5.3 算法参数	35
3.5.4 打码评级	37
3.5.5 读码评分	42
3.6 输入输出	43
3.6.1 输入	43
3.6.2 停止触发设置	47
3.6.3 输出	51
3.7 数据处理	55
3.7.1 过滤规则	55
3.7.2 数据处理设置	57
3.8 比对控制	63
3.8.1 常规比对	63
3.8.2 连号比对	63
3.9 通信配置	64
3.9.1 SmartSDK 方式	65
3.9.2 TCP Client 方式	65
3.9.3 Serial 方式	66
3.9.4 FTP 方式	66
3.9.5 TCP Server 方式	67
3.9.6 Profinet 方式	67
3.9.7 MELSEC 方式	68
3.9.8 EthernetIp 方式	69
3.9.9 ModBus 方式	69
3.9.10 Fins 方式	70
3.9.11 SLMP 方式	71
3.10 配置管理	72
3.10.1 用户参数设置	72
3.10.2 重启相机	73
3.11 数据统计	74
3.12 运行诊断	75
第4章 I/O 与串口介绍	76

ID3000 系列智能读码器 • 用户手册

4.1 I/O 电气特性	76
4.1.1 输入内部电路图	76
4.1.2 输出内部电路图	
4.2 I/O 接线图	
4.2.1 输入外部接线图	
4.2.2 输出外部接线图	
4.3 RS-232 串口	
4.3.1 RS-232 串口介绍	
4.3.2 RS-232 串口接线图	
第5章 常见问题列表	
第6章 修订记录	83
第7章 获得支持	85

第1章 产品简介

1.1 产品说明

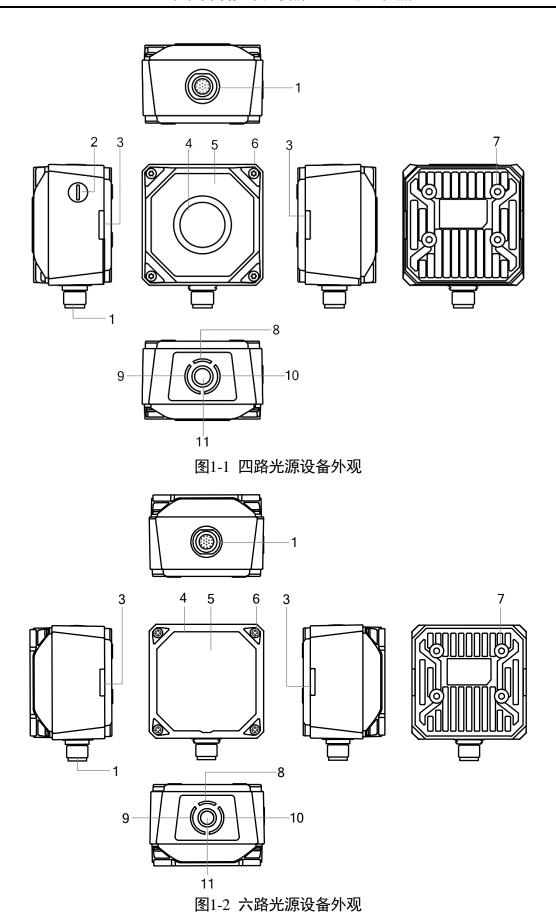
本手册提及的智能读码器集采集图像、条码识别和输出于一身,可应用于 3C、食药品、电子半导体、汽车零配件等行业。

设备利用传感器与光学元件获取被测物的图像,通过设备内置的深度学习读码算法实现条码解析。设备还可通过多种通信方式输出检测结果。

1.2 主要特性

- 内置深度学习读码算法,可适应多种复杂工况,鲁棒性强
- 优秀 Sensor 选型,高速采集优质图像
- 单一线缆提供丰富 IO 接口,可接入多路输入、输出信号
- 顶部环形指示灯及双边侧腰线结果指示灯,快速观察工作状态
- 外置防水调试按钮,支持外部手动触发
- 模块化光源设计,分路可控,替换便捷
- IP67 防护, 无惧严苛的工业应用环境

i 说明


关于设备的技术参数,请查看具体型号设备的技术规格书。

1.3 产品外观介绍

设备整体结构小巧紧凑,灵活度高。根据设备类型不同,可分为四路光源和六路光源 两种情况:

- 四路光源设备,外观如图 1-1 所示。
- 六路光源设备,外观如图 1-2 所示。

设备各组件名称以及作用请见表 1-1。

2

表1-1 设备组件说明

序号	名称	描述
1	17-pin 接口	接口可提供电源、I/O、以太网和串口信号,具体请见 1.4 接口介绍与定义章节 接口带有螺纹,使用时将接口旋紧可减少现场震动等引
		起的接口松动
2	调焦旋钮	用于手动调整焦距,使被测物体成像清晰
		山
3	OK/NG 指示灯	● 设备启动过程中,亮橙色灯
		● 设备上电成功后,亮红灯
		● 设备读到条码信息后持续 0.5s 亮绿灯;若连续识别,则绿灯常亮
4	镜头罩	可拆卸更换,可根据实际需求可选购透明或偏振镜头罩
5	光源	LED 光源,用于采集图像时进行补光,确保图像效果,增强设备的读码性能
		根据设备类型不同,可分为四路光源和六路光源两种。四路光源设备镜头罩内置 8 颗 LED 灯珠。六路光源设备镜头罩内置 14 颗 LED 灯珠,标配半偏振光源,上半部分为正常照明,下半部分为偏振效果
		光源颜色除设备自带的白光外,可选购红光、蓝光或红外 光,也可选购广角白光/蓝光/红光的光源
6	螺丝	用于固定机身与镜头罩
7	螺孔	用于固定设备,采用 M4 规格的螺丝
8	PWR 指示灯	电源指示灯,设备正常运行时亮绿灯,异常时亮红灯
9	STS 指示灯	状态指示灯,设备正常运行时亮绿灯,设备启动或运行异常时亮红灯
10	LNK 指示灯	网络状态灯, 网络通讯正常时为绿灯频闪状态, 网络异常时不亮
11	按钮	● 设备处于连续采图模式时,单击按钮则进入触发模式● 设备处于触发模式时,单击按钮则触发一次

1.4 接口介绍与定义

设备接口为 17-pin M12 接口,提供供电、I/O、以太网和串口,具体管脚信号定义如图 1-3、表 1-2 所示。

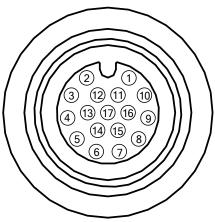


图1-3 17-pin 接口

表1-2 管脚定义

管脚	信号	I/O 信号源	说明
1	POWER_IN	_	直流电源正
2	DO_2	LineOut2 信号线	非隔离输出
3	_	_	_
4	RS232TX	_	232 串口输出
5	RS232RX	_	232 串口输入
6	MDI0+	_	百兆网络信号 MDI0+
7	MDI1-	_	百兆网络信号 MDI1-
8	DO_0	LineOut0 信号线	非隔离输出
9	DI_2	LineIn2 信号线	非隔离输入
10	DO_1	LineOut1 信号线	非隔离输出
11	GND	信号地	直流电源负
12	_	_	_
13	_	_	_
14	MDI0-	_	百兆网络信号 MDI0-

15	MDI1+	_	百兆网络信号 MDI1+
16	DI_0	LineIn0 信号线	非隔离输入
17	DI_1	LineIn1 信号线	非隔离输入

道 说明

设备接线时,请根据表中的各管脚编号及对应的定义说明,结合线缆标签上的名称和颜色进行连接。

设备需使用出厂配套的 17-pin 线缆,如图 1-4 所示。17-pin 线缆中与接口的 6、7、14、15 号管脚对应网络传输部分已做成 RJ45 转接头,无需自己对应网口线序接线。17-pin 线缆中与接口的其他管脚对应部分引出对应的线,可根据实际使用需求,自行接线。

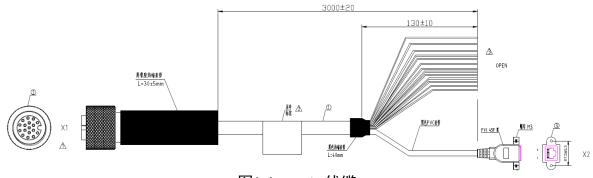


图1-4 17-pin 线缆

1.5 安装配套

为正常使用设备,安装前请先准备表 1-3 所示的配套物品。

序号	配件名称	数量	说明
1	设备整机	1	本手册所指产品
2	线缆	1	连接设备接口的 17-pin 线缆,出厂已配 3 米长线缆
3	开关电源或电源 适配器	1	根据设备的供电和功耗选择合适的电源适配器或开 关电源,具体参数请查看对应型号设备的技术规格 书,需单独采购
4	网线	1	合适长度的 RJ45 转 RJ45 百兆网线,需单独采购

表1-3 安装配套清单

第2章 设备安装与调试

2.1 设备安装

- 1. 将设备固定到安装位置。机身背面有 4 个安装螺孔,建议采用包装中自带的 M4 规格螺丝固定。
- 2. 参考 1.4 接口介绍与定义章节的接口定义进行接线,接在合适的电源适配器或开关电源上给设备供电。
- 3. 使用网线将设备与交换机或者网卡正常连接,用于图像调试或数据通信。

2.2 PC 网络配置

依次打开 PC 上的"控制面板">"网络和 Internet">"网络和共享中心">"更改适配器配置",选择对应的网口,将网口配置成自动获取 IP 地址或静态 IP,如图 2-1 所示。确保 PC 与设备在同一个局域网。

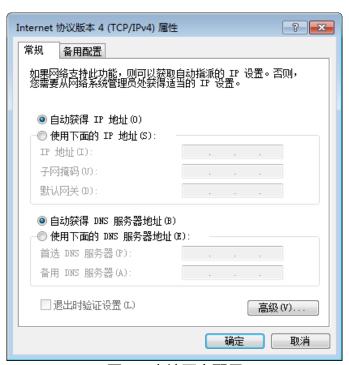


图2-1 本地网卡配置

2.3 客户端安装

设备可通过 IDMVS 客户端进行图像调试和参数设置。IDMVS 客户端支持在 Windows XP/7/10 32/64bit 操作系统上安装。

道说明

该软件已经集成硬件所需驱动, 无需下载安装其他驱动。

客户端安装步骤如下:

- 1. 进入海康机器人官网(www.hikrobotics.com),选择"机器视觉">"服务支持">"下载中心">"软件",下载机器视觉智能读码器客户端IDMVS安装包。
- 2. 进入安装界面,单击"开始安装",如图 2-2 所示。

图2-2 安装界面

3. 选择安装路径, 并开始安装。安装结束时, 单击"完成"即可。

i 说明

不同版本客户端软件界面可能与本手册截图有差异,请以实际显示为准。

2.4 设备 IP 配置

IDMVS 客户端可自动枚举局域网下的设备。若设备为不可达状态,说明设备和 PC 不在同一个网段,如图 2-3 所示。双击设备后弹出修改 IP 地址的窗口,可根据窗口提供的 IP 地址范围修改 IP 使设备可达,如图 2-4 所示。

图2-3 设备不可达

图2-4 修改 IP

2.5 客户端操作

设备可通过 IDMVS 客户端进行相关操作,具体如下:

- 1. 确认设备可达的情况下,在客户端的"相机连接"选中设备并双击即可成功连接设备。
- 2. 连接设备后客户端主界面如图 2-5 所示,各功能模块的简要介绍请见表 2-1。 关于 IDMVS 客户端的详细介绍,请查看客户端的用户手册。

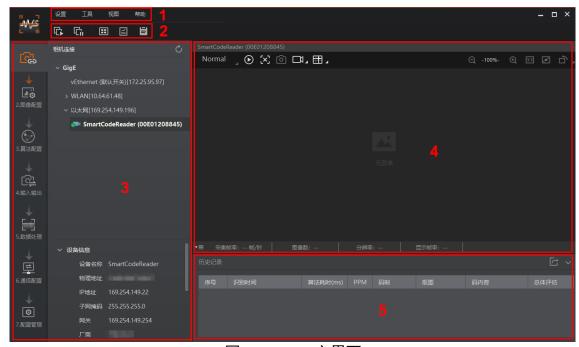


图2-5 IDMVS 主界面

表2-1 IDMVS 主界面介绍

序号	名称	功能简述
1	菜单栏	可对客户端基础功能进行设置,还可对设备进行 IP 配置和固件升级等
2	控制工具条	可同时对多台设备批量开始/停止采集,设置客户端的画面布局,统计设备的读码信息、查看设备的日志信息等
3	相机配置	可对设备进行相关操作,包括连接/断开设备、参数设置、IP 地址设置等
4	预览窗口	可实时预览设备当前的采集的图像和算法读取的效果,同时还可进行录像、抓图、画十字辅助线等
5	历史记录	实时显示客户端当前读取到的条码信息

3. 通过"预览窗口"区域左上角下拉选择设备的运行模式,如图 2-6 所示。运行模式分为 Test、Normal 和 Raw 共 3 种,具体介绍请见 3.2 运行模式章节。

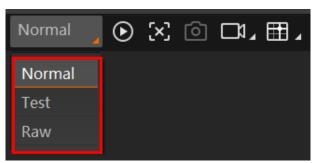


图2-6 运行模式设置

4. 通过"相机配置"区域对设备进行参数设置,各模块的简要介绍请见表 2-2,具体介绍请见第 3 章 功能描述。

表2-2 相机配置区域介绍

序号	模块名称	功能说明		
1	相机连接	可对设备进行连接、IP 配置、查看设备或接口信息等		
2	图像配置	可对设备的图像、光源和其他相关参数进行设置		
3	算法配置	可对设备读码的码制和相关的算法参数进行设置		
4	输入输出	可对设备的 I/O 信号相关参数进行设置		
5	数据处理	可对设备输出的结果进行过滤规则和相关数据处理进		

		行设置
6	通信配置	可对设备输出结果的通信协议相关内容进行设置
7	配置管理	可对设备的用户参数相关内容进行设置,还可重启设备

5. 通过"预览窗口"区域,单击 可以查看图像和条码识别情况,如图 2-7 所示。 对于实时读取到的条码,客户端会在实时画面中框选条码,且在左下角显示具体的 条码信息。

图2-7 设备实时预览

6. 若识别效果不佳,可在"相机配置"区域调节"图像配置"模块的参数,包括曝光时间、增益、伽马以及光源参数,如图 2-8 所示。同时对于手动调焦设备,可手动调节设备侧边的调焦旋钮;对于带机械调焦镜头的设备,可通过自动调焦功能来调整图像效果。

i说明

- 对于不带光源的设备,需通过外接光源进行补光。
- 不同固件版本及不同型号的设备,支持的光源功能有所差别,具体请以实际参数为 主。

图2-8 图像配置参数

7. 对于设备识别的条码信息,"历史记录"区域会显示具体的信息,包括识别时间、算法耗时、PPM、码制、码内容、总体评估和读码评分等,如图 2-9 所示。

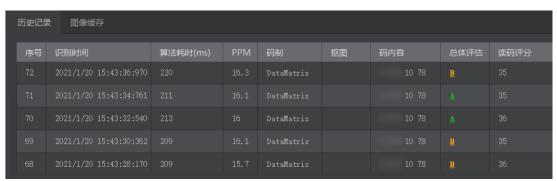


图2-9 历史记录显示

算法耗时和 PPM 显示需要设备及固件支持, 若不支持, 则该列显示/。

第3章 功能描述

3.1 相机连接

设备可通过"相机连接"模块连接设备、查看设备信息、修改 IP 地址、固件升级等。 设备连接相关功能操作步骤如下:

- 1. 连接设备: 选中可用状态下的设备,双击或单击设备右侧的型即可。
- 2. 查看设备信息:此时"相机连接"模块下方可显示设备的基本信息,包括设备名称、IP 地址、子网掩码、网关、厂商、型号、序列号、设备版本和固件版本等,如图 3-1 所示。

图3-1 设备信息

- 3. 采集图像。选中已连接设备,右键单击选择"开始采集"或通过"预览窗口"区域的 **○**即可采集图像。
- 4. 重命名用户 ID。选中已连接设备,右键单击选择"重命名用户 ID",在弹出的窗口中根据实际需求设置用户 ID 并单击"确定"即可,如图 3-2 所示。

图3-2 重命名用户 ID

5. 查看属性树。选中已连接设备,右键单击选择"属性树"可进入设备自身的属性树,如图 3-3 所示。

图3-3 进入属性树

进入属性树后,各属性名称如图 3-4 所示。不同型号设备的属性树略有差异,具体请以实际情况为准。

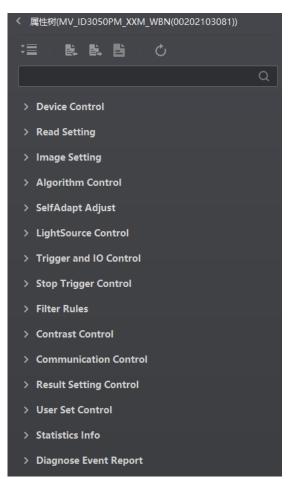


图3-4 属性树显示

关于各属性树介绍,如表 3-1 所示。

表3-1 设备属性介绍

属性	名称	功能概述
Device Control	设备控制	查看设备信息,修改设备名称以及重启设备
Read Setting	读码设置	查看并设置运行模式以及读取条码的类型
Image Setting	图像设置	查看并设置帧率、曝光、增益、Gamma 等
Algorithm Control	算法参数控制	查看并设置读码算法相关参数,例如最大条 码识别个数、镜像、等待时间等
Focus Control	焦距控制	可对设备的调焦模式以及调焦的相关参数进行设置
SelfAdapt Adjust	自适应调整	可一键完成曝光、增益、伽马等参数的调整
LightSource Control	光源控制	可对设备的光源类型、使用方式以及其他相 关参数进行设置
Trigger and IO Control	I/O 控制	查看并设置 I/O 输入以及输出相关参数
Filter Rules	过滤规则	设置条码的过滤规则
Comtrast Control	比对控制	可将读取到的数据与预设数据进行比对,并 输出比对结果
Result Setting Control	输出配置	可进行输出信息的配置,包括输出缓存配置、输出图片 index 配置、noread 存图配置、ROI输出配置,以及不同通信方式的输出格式设置等
User Set Control	用户参数控制	可保存或加载参数组,并设置设备上电启动时的默认参数组;还可以通过两个用户灯确认相关信息
Statistics Info	数据统计	可统计设备自上电到当前或最近 10 次的总帧数、读到码帧数、未读到码帧数、读取率、算法耗时和读码耗时等数据
Diagnose Event Report	运行诊断	在设备运行过程中,对崩溃异常、内存使用率和 CPU 使用率进行检测,并在出现崩溃、内存异常或 CPU 使用率过高时进行提示

道说明

不同固件版本及不同型号的设备,支持的功能有所差别,所展示的属性信息不完全相同,具体属性信息可以在客户端中的属性树中查找。

- 6. 存储导出。选中已连接设备,右键单击选择"存储导出"可从客户端导出 Noread 存图,图片将以 jpg 或 bmp 格式存储在指定路径下的"no read"文件夹中。
- 7. 保存 GenlCam XML。选中设备列表中已连接的设备,右键单击选择"保存 GenlCam XML" 可以对当前连接的设备的 GenlCam 文件以 XML 格式保存。
- 8. 设备重启。选中已连接设备,右键单击选择"设备重启"即可软重启设备,与"配置管理"模块的"重启相机"功能相同。
- 9. 在不连接设备的情况下,可以修改设备的 IP。选中可用或不可达的设备,右键单击选择"修改 IP",在弹出的窗口中根据实际需求设置 IP 即可,如图 3-5 所示。
 - 静态 IP: 固定设备的 IP 地址,推荐使用。
 - 自动分配 IP: 设备与 PC 自动协商配置 IP 地址。

图3-5 修改 IP

10. 在不连接设备的情况下,可以对设备进行固件升级。选中可用的设备,右键单击选择"固件升级",在弹出的窗口中通过 选择升级的固件程序(dav 文件),单击"升级"按钮即可。

升级过程中,固件升级窗口会显示目前升级的进度。升级完成后,客户端会弹框提示"升级成功",且设备会自动重启。

图3-6 固件升级

3.2 运行模式

设备可通过"预览窗口"区域左上角可选择运行模式,运行模式分为 Test、Normal 以及 Raw 共 3 种模式,如图 3-7 所示。具体介绍请见表 3-2,请根据实际需求选择。

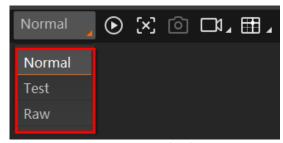


图3-7 设置运行模式

名称	作用
测试模式	设备输出实时获取的图片,并显示条码信 息。该模式常用于图像调试阶段。
正常模式	设备识别到图像的条码后,输出图像以及条码信息。图像调试结束后,正常运行时选用

设备输出裸数据,并显示条码信息。该模式

常用于测试图像数据阶段及算法调试使用。

表3-2 运行模式介绍

3.3 镜头调焦

Raw

运行模式

Test

Normal

部分设备支持通过图像配置模块下的自动对焦参数实现镜头调焦功能。目前设备支持 一次自动和手动两种调焦方式,可根据实际需求选择设备的调焦模式,并对相关参数 进行设置。

Normal 模式。

道 说明

请在 Test 运行模式下进行镜头调焦,完成对焦后,再切换至 Normal 模式下使用。关于设备运行模式的介绍,具体请参见 3.2 运行模式章节。

3.3.1 一次自动调焦

- 一次自动调焦的具体设置,操作步骤如下:
- 1. 在预览窗口右上角单击 进入图像预览状态。

裸数据模式

- 2. 自动调焦配置下,点击对焦模式右侧的"执行",设备开始自动对焦。自动对焦过程中,自动调焦配置下的参数置灰,不可设置;自动对焦完成后,自动调焦配置下的参数恢复可设置状态。
- 3. 完成镜头调焦后,在对焦位置参数处下拉选择存储参数,然后单击保存右侧的"执行",则聚焦调节参数中的焦距值将被保存至所选的参数中。
- 4. 在对焦位置参数处下拉选择已保存焦距的参数,然后单击加载右侧的"执行",可加载已保存的焦距,如图 3-8 所示。

图3-8 保存与加载焦距

3.3.2 手动调焦

1. 自动调焦配置下,根据需求设置调焦步进距离,如图 3-9 所示。

图3-9 手动调焦模式选择

- 2. 通过单击聚焦调节参数左侧的 和右侧的 ,进行正向或反向调整。用户可根据实际预览画面的清晰程度选择调焦方向。当画面逐渐清晰时,可适当减小调焦的步进距离,以便更精确地调节焦距,达到最佳效果。
- 3. 保存焦距请参考一次自动对焦中的第3步;加载焦距请参考一次自动对焦中的第4步。

3.4 图像配置

设备可通过"图像配置"模块对设备的图像、光源相关参数进行设置。

道 说明

不同型号设备的功能有所不同,请以具体型号设备为准。

3.4.1 图像

图像部分可对曝光时间、增益、伽马、采集帧率和触发帧计数进行设置,建议根据实际使用需求进行设置。

- 曝光时间(µs): 增大曝光时间可提高图像亮度,但一定程度上会降低采集帧率,且 拍摄运动物体时容易出现拖影。
- 增益 (dB): 增大增益可提高图像的亮度, 但一定程度上图像的噪点会增加。
- 伽马: 伽马可调整图像的对比度。建议降低伽马的数值使暗处亮度提升,有助于条码的读取。
- 采集帧率(帧/秒): 采集帧率为设备每秒采集的图像数。
- 触发帧计数: 触发帧计数为设备触发一次时输出的图像数。

图3-10 图像相关参数

道说明

曝光时间和增益设置的范围、采集帧率的最大值由设备决定,请查看具体型号设备的 技术规格书。

3.4.2 曝光

设备支持手动、一次自动、连续自动和交替曝光 4 种曝光方式,设置方式及原理请见表 3-3。

曝光方式	对应参数	参数选项	工作原理
手动	Image Setting > Exposure Auto	Off	根据用户在 Exposure Time(μs)参数中设置的 值来曝光
一次自动		Once	根据设备的参数设置及周围环境自动调整曝 光值,自动调整一次后切换为手动曝光方式
连续自动		Continuous	根据设备的参数设置及周围环境连续自动地 调整曝光值
交替曝光	Image Setting > Exposure Alternate	-	根据用户设置的多组曝光参数值来进行交替 曝光

表3-3 4种曝光方式及其工作原理

选择不同曝光方式时,需要设置的参数有所不同。

一次自动/连续自动曝光

曝光方式选择一次自动或连续自动时,可以设置曝光的范围。设置方法如下:

- 1. 在属性树中找到 Image Setting 属性并展开。
- 2. 根据需求,将 Exposure Auto 设置为 Once(一次自动)或 Continuous(连续自动)。
- 3. 根据需求,将 Exposing Area 设置为 *Global*(全局)或 *Partial*(局部)。全局曝光为针对预览画面整体进行曝光;局部曝光为针对预览画面的特定范围进行曝光。
- 4. 选择局部曝光时, 还需要设置具体的曝光范围, 如图 3-11 所示。具体参数含义如下:
 - Area Width: 局部曝光区域横向的分辨率。
 - Area Height: 局部曝光区域纵向的分辨率。
 - Offset X: 局部曝光区域左上角起点位置的横坐标。
 - Offset Y: 局部曝光区域左上角起点位置的纵坐标。



图3-11 一次自动/连续自动曝光

交替曝光

曝光方式选择交替曝光时,需要设置参与交替曝光的参数组及曝光参数值。设置方法如下:

- 1. 在属性树中找到 Image Setting 属性并展开。
- 2. 开启 Exposure Alternate 使能。
- 3. 从 Exposure Index 的 Exposure1~Exposure8 中任意选择 1 套参数。
- 4. 开启所选参数下的 Exposure Enable, 即该组参数将参与交替曝光。
- 5. 在 Exposure Time 中设置所选参数的曝光值,如图 3-12 所示。

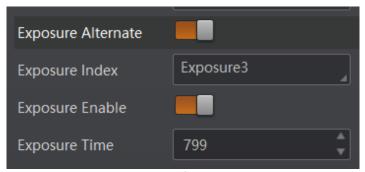


图3-12 交替曝光

6. 重复第3步~第5步,为所选的每套参数设置曝光值。

不同型号及不同固件版本设备的交替曝光参数有所不同,具体请以实际参数为准。

3.4.3 增益

设备支持手动、一次自动、连续自动和交替增益 4 种模式,设置方法及原理请见表 3-4。

增益模式	对应参数	参数选项	工作原理
手动	Image Setting > Gain Auto	Off	根据用户在 Gain(dB)参数中设置的值调整增益
一次自动	Guiii Auto	Once	根据设备的参数设置及周围环境自动调整增 益值,自动调整一次后切换为手动方式
连续自动		Continuous	根据设备的参数设置及周围环境连续自动地 调整增益值
交替增益	Image Setting > Gain Alternate	-	根据用户设置的多组增益参数值来进行交替增益

表3-4 4种增益模式及其工作原理

增益模式选择交替增益时,需要设置参与交替增益的参数组及增益参数值。设置方法如下:

- 1. 在属性树中找到 Image Setting 属性并展开。
- 2. 开启 Gain Alternate 使能。
- 3. 从 Gain Index 的 Gain1~Gain8 中任意选择 1 套参数。
- 4. 开启所选参数下的 Gain Enable,即该组参数将参与交替增益。
- 5. 在 Alternate Gain 中设置所选参数的增益值,如图 3-13 所示。

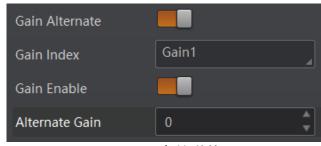


图3-13 交替增益

6. 重复第3步~第5步,为所选的每套参数设置增益值。

不同型号及不同固件版本设备的增益参数有所不同,具体请以实际参数为准。

3.4.4 轮询

设备支持轮询功能,通过 Image Setting 属性下的 Polling Enable 参数进行设置。

Polling Enable 参数具体选项介绍如下:

● Off: 关闭轮询功能。

● Single: 单组参数模式。

● Multiple: 多组参数轮询模式。

i说明

- 开启轮询功能时,外部帧率控制不生效,设备以最大帧率进行轮询。关闭轮询后, 帧率控制生效。
- 轮询功能正常使用时建议采用 Normal 模式, Test/Raw 模式只用于调试。
- 设备是否支持轮询功能,与设备型号以及固件程序有关,具体请以实际参数为准。

单组参数模式(Single)

单组参数模式下支持指定轮询模块内 1-8 套参数中的 1 套进行检测。设置方法如下:

- 1. 通过"相机连接"模块选择设备,右键单击进入属性树。
- 2. 找到 Image Setting 属性并展开。
- 3. 通过 Polling Enable 参数下拉选择 Single 模式,可对相关参数进行设置,如图 3-14 所示。

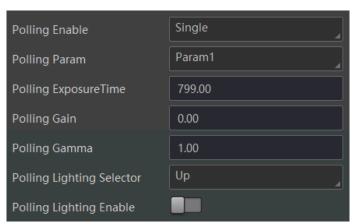


图3-14 单组参数模式

- 4. 从 Polling Param 的 Param1~Param8 中任意选择 1 套参数。
- 5. 设置所选参数的曝光、增益和 Gamma 值。

具体参数介绍如下:

- Polling ExposureTime: 设置轮询曝光时间。

- Polling Gain:设置轮询增益。

- Polling Gamma: 设置轮询 Gamma 值。

6. 通过 Polling Lighting Selector 参数选择光源通路,可选 Up、Down、Left、Right、ALL,如图 3-14 所示。再开启 Polling Lighting Enable 参数光源即可常亮。

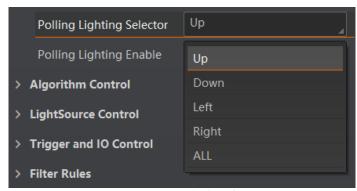


图3-15 光源轮询选择器

多组参数轮询模式 (Multiple)

多组参数轮询模式下支持指定轮询模块内任意 2-8 套参数进行轮询检测。Multiple 模式支持触发(包括软触发、外部触发、TCP、UDP等)参数轮询功能,不支持外部触发轮询停止。设置方法如下:

- 1. 通过"相机连接"模块选择设备,右键单击进入属性树。
- 2. 找到 Image Setting 属性并展开。
- 3. 通过 Polling Enable 参数下拉选择 Multiple 模式,可对相关参数进行设置,如图 3-15 所示。

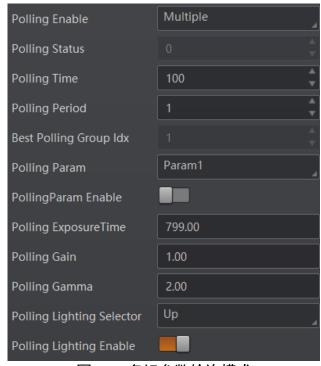
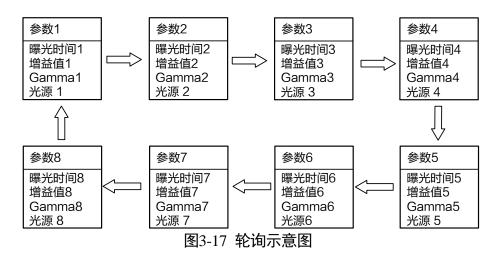



图3-16 多组参数轮询模式

- 4. 通过 Polling Time 和 Polling Period 参数设置轮询持续时间及轮询周期,具体参数含义如下:
 - Polling Time:设备轮询持续时间,轮询模式最少输出 2 帧,用于判断轮询结束状态使用。
 - Polling Period: 轮询周期。所有轮询参数集选择器(Param1~Param8)遍历一遍为 一个轮询周期。
- 5. 从 Polling Param 的 Param1~Param8 中选择 2~8 套参数,通过使能所选参数下的 PollingParam Enable 开关决定该组参数是否参与轮询。8 套参数之间的轮询示意图如图 3-16 所示。

道 说明

轮询规则为:由最优参数组开始,然后从第一组已开启轮询使能的参数组开始依次进行。例如,开启轮询使能的参数为 1、2、3、4、5,本次使用参数 3 进行识别(即作为最优组),则轮询顺序为参数 3>参数 1>参数 2>参数 4>参数 5,如此为一个轮询周期。

- 6. 设置所选参数的 Polling ExposureTime、Polling Gain 和 Polling Gamma 值。
- 7. 通过 Polling Lighting Selector 和 Polling Lighting Enable 参数进行光源通路选择和使能。
- 8. 重复步骤 5~步骤 7,对所选的每套参数进行参数设置。
- 9. 可通过 Polling Status 和 Best Polling Group Idx 参数查看当前轮询状态和轮询最优组数,具体参数含义如下:
 - Polling Status: 显示当前轮询状态, 0表示轮询结束, 1表示轮询运行。
 - Best Polling Group Idx:轮询最优组数显示。未开启轮询时,最优组数节点默认显示为 1;当开启轮询并读到码,则显示为当前读到码的轮询参数编号。当更改相关轮询参数并点击参数确认按键,则最优组数显示恢复为默认值 1。

3.4.5 光源

光源部分可对光源类型以及其他相关参数进行设置,建议根据实际使用需求进行设置。

光源类型分为自带光源、外接光源和无光源三种类型,不同光源类型可设置的参数有 所差别。

自带光源

光源类型选择自带光源时,设备使用自带的光源打光,并可以设置其他相关参数。根据设备类型不同,可支持四路光源及六路光源两种类型,设置的参数项也有所差别。 具体操作步骤如下:

- 1. 在光源类型处的下拉菜单中,选择"自带光源"。
- 2. 通过"光源分路"参数,可根据实际需求,设置需要开启的光源分路。
 - 当设备类型为四路光源时,可根据实际需要通过点击上、下、左、右的灯珠来开启不同分路的光源。也可通过勾选"全部开启",开启所有分路的光源;
 - 当设备类型为六路光源时,可根据实际需要通过点击左上、中上、右上、左下、中下、右下的灯珠来开启不同分路的光源。也可通过勾选"全开"、"全关"按钮同时开启或关闭所有分路的光源。
- 3. 选择光源模式,不同型号设备支持的光源模式有所不同,分为 Strobe 和 Long 两种模式。Strobe 模式下设备光源频闪,Long 模式下设备光源常亮。
- 4. (可选)根据实际使用需求,通过是否开启瞄准器使能参数,设置设备的瞄准器是否 开启。
- 5. (可选)根据实际需求设置光源相关参数,如图 3-18 所示。具体参数含义如下:
 - 照明持续时间, 此参数为设备光源照明的持续时间, 单位为 μs;
 - 照明延迟时间,此参数为 Strobe 模式特有参数,可设置光源延迟于设备开始曝光的时间,单位为 μs;
 - 照明提前时间,此参数为光源提前干设备开始曝光的时间,单位为 us。

图3-18 自带光源

外接光源

光源类型选择外接光源时,设备通过触发输出控制外部光源的方式进行打光。具体操作步骤如下:

- 1. 在光源类型处的下拉菜单中,选择"外接光源"。
- 2. 根据实际需求设置光源相关参数,如图 3-19 所示。具体参数含义如下:
 - 输出持续时间:设备外接光源照明的持续时间,单位为 μs。为避免出现设备曝光后期外接光源不亮的情况,建议将输出持续时间设置的数值不小于输出提前时间和曝光时间的总和;
 - 输出延迟时间:可设置外接光源延迟于设备输出事件源的时间,单位为 μs;
 - 输出提前时间:可设置外接光源提前于设备输出事件源的时间,单位为 μs。为避免出现设备开始曝光时外接光源不亮的情况,建议根据实际情况设置一定的输出提前时间。

图3-19 外接光源

无光源

光源类型选择无光源时,设备不开启光源,无需设置其他参数。

道 说明

不同型号及不同固件版本设备的光源参数有所不同,具体请以设备实际显示参数为准。

3.4.6 自适应调节

自适应调整可以自动调整曝光、增益和伽马等参数以取得最佳读码效果,便于设备调 试。

具体操作步骤如下:

- 1. 在"图像配置"模块,点击右上角的"所有属性",展开自适应调节属性。
- 2. 通过"调节模式"参数,可选择自适应调节的模式,分为 High Quality 或 High Speed, 具体含义如下:
 - High Quality: 高质量模式。此模式下优先调节曝光,增益小,噪点小,图片质量较高,适用于传送带速度较慢的场合。
 - High Speed: 高速模式。此模式下优先调节增益,曝光小、增益大,图像质量略差,适用于传送带速度较快的场合。
- 3. 通过"参数源"参数中选择需要调整的参数组, 可选择 Default Param 或 Polling Param, 具体含义如下:
 - Default Param: 调整当前默认参数。
 - Polling Param: 调整轮询模式下某一组参数的值。选择此项时需要在 Polling Param参数中选择需要调整参数值的参数组。
- 4. (可选)设置"光源自适应"参数是否开启。若开启,则自适应调整开始时将遍历所有的光源组合方案,从中选择最优的一组进行光源控制;若不开启,则自适应调整过程中不会调整光源相关参数,保持自适应调整开始前的光源状态。
- 5. (可选)设置"条码类型自适应"参数是否开启。若开启,则自适应的添加视野范围内的读码类型;若不开启,则自适应调整过程中不会添加读码类型,保持自适应调整开始前的读码类型状态。
- 6. (可选)设置自适应调节过程中的最大曝光值或者最大增益值。
 - 最大曝光: 高速模式下启用,设置自适应调节过程中的最大曝光值;
 - 最大增益: 高质量模式下启用,设置自适应调节过程中的最大增益值。
- 7. (可选)通过"调节超时"参数,可设置自适应调整时间,当自适应调整开始并达到设置的时间时,将自动停止。

8. 点击"开始调节"参数处的"执行"按钮,设备自动开始取流、设置环境参数并进行自适应调整。调整结束后设备自动关闭取流。

若完成调整,将提示"调整成功"和调整耗时,此时曝光和增益参数值为自适应调整中设置的值;若调整失败或调整超时则停止调整,并提示"调整失败"或"调整超时"。

图3-20 自适应调整参数

道说明

- 设备是否支持自适应调节功能,与设备型号以及固件程序有关,具体请以实际参数 为准。
- 设备处于取流状态时,开始调节参数不显示,只有停止取流后才可开始自适应调节操作。
- 不同型号以及不同固件程序设备的光源控制参数有所差别,具体请以实际参数为准。

3.4.7 其他参数

其他参数处可以设置图像镜像和测试模式,如图 3-21 所示。

图3-21 其他参数

- 图像镜像:可设置是否开启设备图像水平镜像的功能,默认为开启状态。
- 测试模式: 此为设备的测试图像, 默认为 Off, 即关闭状态。当设备实时采集的图像存在异常时,可通过查看测试模式下的实时采集图像是否也有类似问题, 大致判断图像异常的原因。

i说明

- 测试模式仅在运行模式为 Test/Raw 模式时才显示。
- 不同型号以及不同固件程序设备的其他参数部分内容略有差别,具体请以实际参数 为准。

3.5 算法配置

设备可通过"算法配置"模块对读码算法相关参数进行设置。

算法配置模块默认可选择条码类型并设置个数。若常用属性无法满足设置需求,可通过"算法配置"模块右上角单击"所有属性",此时除条码类型相关参数,还可设置算法参数。

3.5.1 添加条码

添加条码可以设置设备需要读取条码的类型和条码个数。操作方法如下:

1. 单击左上角的"+添加条码",会显示当前读码设备支持的一维码、二维码和堆叠码类型,如图 3-22 所示。

图3-22 添加条码

2. 选择设备需要读取条码的码制,可多选。此时算法配置界面显示已选择的码制,如图 3-23 所示。选择的码制越多,算法处理每张图片的耗时将增加,建议根据实际需求选 择对应的码制,以达到最佳效果。

图3-23 选择条码码制

3. 设置条码个数,一维码个数针对一维码有效,二维码个数针对二维码有效,堆叠码个数对堆叠码有效。

该参数为每张图片中期望查找并输出的条码最大数量。若实际查找到的个数小于该参数,则输出实际数量的条码。设置的数值越大,算法处理每张图的耗时将增加,建议根据实际需求设置,以达到最佳效果。

3.5.2 算法 ROI

算法 ROI 可以只对设备选定的感兴趣区域进行算法识别,其他区域不做算法处理,提高读码效率。设备可设置多个算法 ROI 区域,并按照条码所在算法 ROI 区域的编号由小到大排序输出条码结果。输出规则如下:

1: 条码 2: 条码 3: 条码 20: 条码

若某算法 ROI 区域内未识别到条码,则相应区域的条码信息更改为设置的 noread 字符。

目前支持手动、批量和棋盘格三种算法 ROI 绘制方式,并且支持同时使用三种方式对感兴趣区域进行绘制。

手动绘制算法 ROI

手动绘制算法 ROI 的操作步骤如下:

- 1. 选中已连接的设备,通过预览后停止的方式确保预览窗口显示图像信息。
- 2. 点击"算法配置"模块右上角"所有属性",找到算法 ROI 参数。
- 3. 点击算法 ROI 下的"绘制",此时鼠标在预览窗口变为十字,拖动可出现绿色的框。 根据实际需求调整绿色窗口的大小和位置,此时被框选部分被设置为算法感兴趣区域, 如图 3-24 所示。

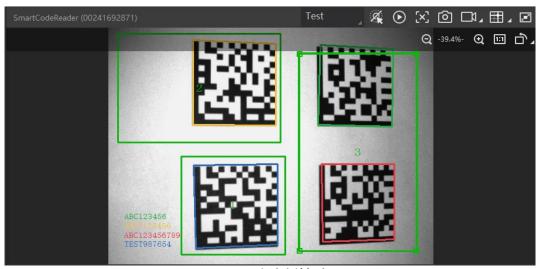


图3-24 手动绘制算法 ROI

- 4. (可选) 若需设置多个算法感兴趣区域, 重复第 3 步即可。预览窗口显示全分辨率的图像, 但只对设置算法 ROI 的区域进行条码解析。
- 5. (可选) 算法感兴趣区域的相关参数可在算法 ROI 下的参数中查看。
 - ROI 选项: 用于标识不同的感兴趣区域;
 - ROI 组别:对 ROI 区域进行分组,每 30 个 ROI 区域为一个组别。ROI 选项参数只显示当前选中组别的 ROI 区域;
 - 绘制-算法宽度: 算法 ROI 区域的宽度信息;
 - 绘制-算法高度: 算法 ROI 区域的高度信息;
 - 绘制-算法偏移 X: 算法 ROI 区域左上角的点的 x 坐标值;
 - 绘制-算法偏移 Y: 算法 ROI 区域左上角的点的 y 坐标值。

图3-25 算法 ROI 设置

- 6. (可选)通过设置如下参数,可对生成的 ROI 区域进行调整或者清除:
 - 修改已设置的算法感兴趣区域:在预览窗口点击需要修改的算法感兴趣区域,或在 ROI 选项中选择具体的算法感兴趣区域,然后根据实际需求调整绿色窗口的大小和位置即可。也可通过在绘制-算法宽度、绘制-算法高度、绘制-算法偏移 X 和绘制-算法偏移 Y 4 个参数中修改数值的方式调整算法感兴趣区域;
 - 恢复至最大算法 ROI: 设置算法 ROI 后,可通过单击"执行"恢复到最大分辨率;
 - 清空全部 ROI: 单击"执行"可清空预览窗口中的所有 ROI 区域;
 - 删除单个 ROI: 在预览窗口右键需要删除的某个算法感兴趣区域,然后点击"删除"即可。

批量绘制算法 ROI

批量绘制算法 ROI 的操作步骤如下:

- 1. 选中已连接的设备,通过预览后停止的方式确保预览窗口显示图像信息。
- 2. 点击"算法配置"模块右上角"所有属性",找到算法 ROI 参数。
- 3. 点击算法 ROI 下的"批量",界面将弹出"创建批量 ROI"的窗口,如图 3-26 所示。根据实际需求,填写多个 ROI 区域的数量及间隔等参数,单击"确定"即可,各参数项具体含义如下:
 - 区域偏移:设置批量算法感兴趣区域水平方向及垂直方向离全分辨率时起始点的像素数;
 - 区域尺寸:设置批量算法感兴趣区域整体水平方向及垂直方向的像素数;
 - ROI 数量:设置批量算法感兴趣区域行数及列数;
 - 行间距:设置批量算法感兴趣区域行与行之间的间隔;
 - 列间距:设置批量算法感兴趣区域列与列之间的间隔。

图3-26 创建批量 ROI 设置

4. 点击"确定", 预览窗口将显示绘制的阵列 ROI, 如图 3-27 所示。

图3-27 批量绘制 ROI

5. 若需要调整或删除已生成的算法 ROI 区域,请参考手动绘制 ROI 中的第5步或第6步。

棋盘格绘制算法 ROI

棋盘格绘制算法 ROI 的操作步骤如下:

- 1. 选中已连接的设备,通过预览后停止的方式确保预览窗口显示图像信息。
- 2. 在算法配置模块,点击右上角的"所有属性",确保算法 ROI 相关参数显示在模块中。
- 3. 点击算法 ROI 下的"棋盘格 ROI"处的"执行"按钮,界面将弹出创建棋盘格 ROI 的 窗口,如图 3-28 所示。根据实际需求,填写多个 ROI 区域的行数与列数。

图3-28 创建棋盘格 ROI 设置

- 4. 此时预览窗口将展示设置的棋盘格 ROI 区域, 如图 3-29 所示。通过如下操作, 可以根据实际需求对 ROI 区域进行调整。调整完成后, 点击 ☑, 此时预览窗口生成棋盘格 ROI 区域, 红色边框变为绿色。
 - 调整感兴趣区域大小及位置: 鼠标置于算法 ROI 区域的外边框,即可根据需求调整算法 ROI 区域整体的大小和位置;
 - 恢复至最大算法 ROI: 点击 ➡, 可将算法感兴趣区域恢复为设备的最大分辨率;

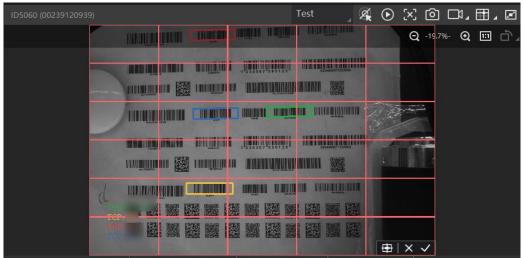


图3-29 棋盘格绘制 ROI

5. 若需要调整或删除已生成的算法 ROI 区域, 请参考手动绘制 ROI 中的第5步或第6步。

i 说明

- 当所有算法 ROI 区域不开启时, 默认当前算法 ROI 区域为全屏。
- 当部分算法 ROI 区域开启,另一部分关闭时,关闭的算法 ROI 区域实际上为位于左上角(0,0)位置处大小为 128*128 的图像区域。
- 不同型号及不同固件版本设备的算法 ROI 参数有所不同,具体请以实际参数为准。

3.5.3 算法参数

通过"算法类型"参数下拉选择 1DCode、2DCode 或 StackCode。1DCode 对应一维码算法参数, 2DCode 对应二维码算法参数, StackCode 对应堆叠码算法参数。

一维码算法参数

- 超时等待时间: 若算法运行时间超出该值,则停止图像处理后输出解析结果。参数设置为 0 时以实际所需算法耗时为准,单位为 ms。
- 极性: 当场景中为白底黑码时,极性参数值需设置为 BlackCodeOnWhiteWall; 当场景中为黑底白码时,极性参数值需设置为 WhiteCodeOnBlackWall; 如果极性参数值配置为 Adaptive,则为自适应模式,算法库将自主判断。
- Code39 校验: 若 Code39 条码使用了校验位, 开启该使能。
- ITF25 校验: 若 ITF25 条码使用了校验位, 开启该使能。
- 1D 打码评级使能:可对一维码的质量进行等级判断。开启该使能,设备读码完成后,客户端将输出展示总体评估等级。目前 1D 打码评级功能仅支持 Code39、Code128 码。

● 读码评分使能:可对一维码的读码环境进行评分。开启该使能,设备读码完成后,客户端将输出展示读码评分数值。

二维码算法参数

- 超时等待时间: 若算法运行时间超出该值,则停止图像处理后输出解析结果。参数设置为 0 时以实际所需算法耗时为准,单位为 ms。
- 运行模式:可选择二维码算法运行模式, Balance 为普通模式, HighPerformance 为专业模式, HighSpeed 为极速模式。
- 模块最大宽高:即可被解析的二维码中,长或宽在图像中占的最大像素数。建议该参数的设置值,比读码设备拍摄的最大二维码的长或宽所占的像素数略大一些。
- 镜像模式: 当采集图像是从反射的镜子中(左右相反)等情况下采集到图像,需要配置该参数。其中 NonMirror 为非镜像,Mirror 为镜像,而 Adaptive 为自适应,即算法库会自主判断。
- 下采样倍数:算法库支持的二维码最小模块占像素数的最大值为 16, 所以当场景中最小模块占像素数超过 16 时,需要配置该参数(或者减小图像采集方案),例如 2 倍下采样。当场景中最小模块没有超过 16 时,要根据现场效果进行调节。
- 极性: 当二维码为白底黑码时,该参数采用默认值 BlackCodeOnWhiteWall。当二维码为黑底白码时,该参数需设置为 WhiteCodeOnBlackWall。如果配置为 Adaptive,则为自适应模式,算法库将自主判断。
- 边缘类型:该参数默认为 Continuous,解析的是连续码。通常连续码最小模块由方形构成,离散码最小模块由圆点构成。如果最小模块之间有间隙,则设置该参数为 Discrete,解析的是离散码。如果配置为 Adaptive,则兼容连续码和离散码,算法库将自主判断。
- QR 畸变:该参数默认不开启,当需要识别的 QR 码打印在瓶体上,或者软包上有褶皱时,建议开启该参数。
- DM 码形状:该参数默认为 Square,即正方形码。当要识别的 DM 码为长方形时,设置参数为 Rectangle。如果配置为 Adaptive,则兼容正方形和长方形码,算法库可自主判断。
- 2D 打码评级使能:可对二维码的质量进行等级判断。开启该使能,设备读码完成后,客户端将输出展示总体评估等级。目前 2D 打码评级功能仅支持 DM、QR 码。
- 读码评分使能:可对二维码的读码环境进行评分。开启该使能,设备读码完成后,客户端将输出展示读码评分数值。

堆叠码算法参数

● 超时等待时间: 若算法运行时间超出该值,则停止图像处理后输出解析结果。参数设置为0时以实际所需算法耗时为准,单位为ms。

● 读码评分使能:可对堆叠码的读码环境进行评分。开启该使能,设备读码完成后,客户端将输出展示读码评分数值。

道 说明

不同型号及不同固件版本设备算法参数不同, 具体请以实际参数为准。

3.5.4 打码评级

打码评级功能可对码的质量进行等级判断。设备读码完成后,客户端将输出展示总体评估等级。根据读码类型不同,分为一维码打码评级以及二维码打码评级 2 种情况进行介绍。

一维码打码评级

- 一维码打码评级功能通过 Iso15416 标准对条码进行等级判断,目前仅支持 Code39、Code128 码。具体设置方法如下:
- 1. 点击"算法配置"模块右上角"所有属性",找到算法参数。
- 2. 算法类型处下拉选择 1DCode。
- 3. 切换运行模式为 Normal 模式, 并开启打码评级使能, 如图 3-30 所示。

图3-30 一维码打码评级

4. 根据实际需求,选择打码评级的评断标准。开启该评级标准使能,表示使用该标准对条码进行评判,各评判标准及其含义请见表 3-5。

评判标准	含义
可译码性	评估条码是否有足够的基本信息可以被解码
字符对比度	评估条码区域的最大亮度值和最小亮度值之间的差值
调制	评估单元亮度的变化程度
边缘确定度	评估条码读取的边缘数与设置的边缘数的符合程度
最小反射率	评估最小亮度值与最大亮度值的比例
最小边缘对比度	评估连接空格的条反射率差的最小值
解码使能	评估条码识别时是否被成功
缺陷	评估条码或者空格处是否存在缺陷或污脏
静区	评估条码静区宽度是否符合规格

表3-5 9 种一维码评判标准及其含义

5. 根据实际需求,设置各评断标准 A、B、C、D 等级的评判值,如图 3-31 所示。

设备读码实际值大于 A 等级评判值,评断标准为 A 级;设备读码实际值介于 A 等级与 B 等级评判值之间,评断标准为 B 级;设备读码实际值介于 B 等级与 C 等级评判值之间,评断标准为 C 级;设备读码实际值介于 C 等级与 D 等级评判值之间,评断标准为 D 级;设备读码实际值低于 D 等级评判值,评断标准为 F 级。

输出的打码评级等级选取所有评断标准中最差的等级作为条码的等级判断结果,A 等级码的质量最好,F等级码的质量最差。

图3-31 各评级标准等级设置

6. 开启光圈使能,根据条码的最小模块的实际尺寸,设置标准光圈值。

7. 点击采集图像,设备读码完成后,通过客户端"历史记录"的"总体评估"处,可查看将输出打码评级等级,如图 3-32 所示。

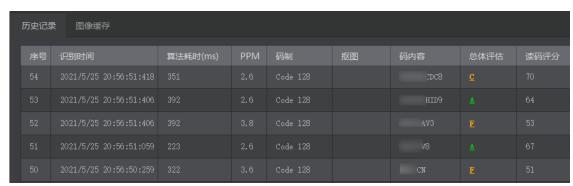


图3-32 打码评级结果查看

8. 若需要对输出的总体评估等级进行解析,可通过点击"总体评估"处的等级,查看各项参数的具体评估结果,如图 3-33 所示。

图3-33 打码评级结果解析

i 说明

一维码打码评级使能仅在运行模式为 Normal 模式时才显示。当运行模式为 Test 模式时, 该功能自动开启。

二维码码打码评级

- 二维码打码评级功能通过 Iso15415 标准或者 Iso29158 标准对条码进行等级判断,目前 仅支持 DM、QR 码。具体设置方法如下:
- 1. 点击"算法配置"模块右上角"所有属性",找到算法参数。
- 2. 算法类型处下拉选择 2DCode。
- 3. 切换运行模式为 Normal 模式, 并开启打码评级使能, 如图 3-34 所示。

图3-34 打码评级使能

- 4. 通过"符号处理类型"参数设置打码评级处理类型, 可选择 DM Type 或 2D Code Type。 DM Type 适用于 DM 码, 2D Code Type 适用于 DM 码及 QR 码。DM Type 对码的定位适应性相对较强, 因此 DM 码默认选择 DM Type。
- 5. 选择 DM Type 处理类型时,可对如下参数进行设置。
 - Iso 类型:设置打码评级标准,可选择 Iso15415 标准或者 Iso29158 标准。Iso15415 标准适用于标签二维码评级, Iso29158 标准适用于 DPM 格式二维码评级;
 - 验证类型:设置打码评级模式,可选择 Standard Mode 以及 HIK Mode。Standard Mode 为标准评级模式, HIK Mode 为专用评级模式。

图3-35 Type1 打码评级参数设置

- 6. 选择 2D Code Type 处理类型时,可对如下参数进行设置。
 - Iso 类型:设置打码评级标准,仅支持 Iso15415 标准;
 - 验证类型:设置打码评级模式,仅支持 Standard Mode;
 - 标准光圈:设置码的最小模块的实际尺寸,单位为 μm;
 - 放大倍率:设置每毫米码在图像上所占尺寸,单位为 pixel/mm。

图3-36 Type2 打码评级参数设置

7. 若需要查看打码评级结果及结果解析,请参考一维码打码评级中的第 5 步或第 6 步。 二维码打码评级等级判断标准与一维码有所差别。二维码打码评级功能使用固定的 等级评断标准对码进行判断,因此无需设置相关参数。各评判标准及其含义请见表 3-6。

表3-6	9 种二维码评判标准及其含义	
.,,,	~ 11 	•

评判标准	含义
解码	评估条码是否有足够的基本信息可以被解码
字符对比度	评估条码区域的最大亮度值和最小亮度值之间的差值
调制	评估单元亮度的变化程度
定位图形受损	评估码格式的损坏情况,包括码的定位格式、净空区、时钟 以及其他固定的格式
轴非均一性	评估条码纵向和横向大小的失真度
非均匀网格	评估条码内单元模块的扭曲度
未使用的误差校正	评估条码内是否有单元模块损坏,从而降低了条码的误差校正能力
打印伸缩 (水平)	评估条码横向上每个单元的大小是否统一
打印伸缩(垂直)	评估条码纵向上每个单元的大小是否统一

i 说明

- 二维码打码评级使能仅在运行模式为 Normal 模式时才显示。当运行模式为 Test 模式时,该功能自动开启。
- 不同型号及不同固件版本设备二维码打码评级参数有所不同,具体请以实际参数为 准。

3.5.5 读码评分

开启读码评分使能,可对一维码、二维码和堆叠码的读码环境进行评分。设备读码完成后,客户端将输出展示读码评分数值。

目前读码评分功能在 Test 模式下自动开启;在 Normal 模式下,可通过算法配置模块下"读码评分使能",确定是否开启该功能,如图 3-37 所示。

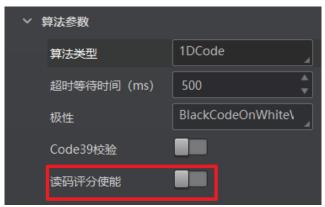


图3-37 读码评分设置

当设备读码完成后,可通过"历史记录"区域,查看读码评分分值,如图 3-38 所示。

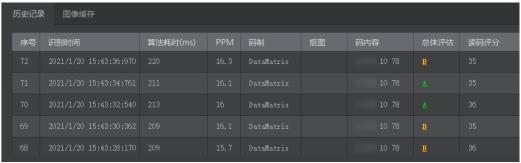


图3-38 读码评分结果

读码评分的分值范围为[0-100],主要由码的成像质量、码的打印质量 2 个因素决定。数值越高,说明条码越容易被识别。

若读码分值较低,可通过 "相机配置"区域调节"图像配置"模块,调节曝光时间、增益、伽马以及光源等参数,对码的成像质量进行调整;若调整后分值不增反降,可查看条码是否存在断针、畸变、浓墨等异常情况。

i 说明

设备是否支持读码评分功能,与设备型号以及固件程序有关,具体请以实际参数为准。

3.6 输入输出

输入输出模块可对设备的输入信号以及输出信号进行设置, I/O 接口相关内容请查看第4章 I/O 与串口介绍。

道 说明

不同型号设备可设置的触发源有所不同,请以具体型号设备为准。

3.6.1 输入

输入部分可设置设备是否开启触发模式,选择触发源并设置相关参数。

设置输入信号的方法如下:

- 1. 触发模式处下拉选择 On。
- 2. 触发源处根据实际需求下拉选择对应的触发源。触发源分为 Software (软触发)、LineIn 0/1/2(外部触发)、Counter 0(计数器触发)、TCP Start、UDP Start、 Serial Start 以及 Self Trigger。
- 3. 根据实际需求设置触发延迟时间,单位为 μs。默认为 0,即接收输入信号后立即触发设备采图。关于触发延迟的原理,如图 3-39 所示。

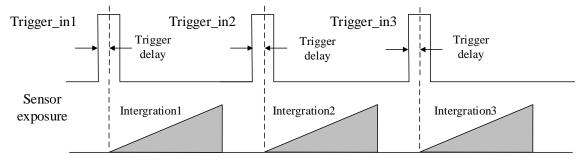


图3-39 信号延迟原理

4. 若触发源选择为软触发,则可以软触发参数的"执行"按钮,手动控制进行触发;还可以通过自动触发时间和自动触发使能参数进行自动软触发,如图 3-40 所示。

图3-40 软触发参数设置

5. 若触发源选择外部触发,可设置防抖时间对输入的信号进行去抖处理,如图 3-41 所示。

图3-41 外部触发参数防抖设置

关于去抖时序的原理,如图 3-42 所示。当设置的去抖时间大于触发信号脉宽时,则该触发信号被忽略;当设置的去抖时间小于触发信号脉宽时,则该触发信号延迟后继续输出。

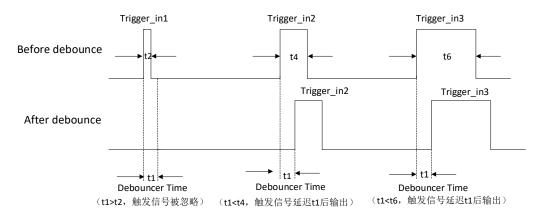


图3-42 触发输入信号去抖时序

6. 若触发源选择外部触发,可选择硬触发激活方式 Rising Edge(上升沿)、Falling Edge(下降沿)、Level High(高电平)或 Level Low(低电平),如图 3-43 所示。具体工作原理如下:

- Rising Edge:外部设备给出的电平信号在上升沿时,设备接收触发信号开始采图。

- Falling Edge: 外部设备给出的电平信号在下降沿时,设备接收触发信号开始采图。

- Level High:外部设备给出的电平信号在高电平时,设备一直处于图象采集状态。

- Level Low:外部设备给出的电平信号在低电平时,设备一直处于图象采集状态。



图3-43 外部触发参数触发方式设置

7. 若触发源选择计数器触发,可根据实际需求设置计数器数值、计数器信号源和硬触发激活参数。其中,计数器数值的范围为 1~1023,计数器的信号源可以选择 Lineln0/1/2,如图 3-44 所示。

图3-44 计数器触发参数设置

8. 若触发源选择 TCP Start, 需要设置 TCP 触发端口和 TCP 启动触发器, 如图 3-45 所示。

图3-45 TCP 触发参数设置

9. 若触发源选择 UDP Start,需要设置 UDP 触发端口和 UDP 启动触发器,如图 3-46 所示。

图3-46 UDP 触发参数设置

10. 若触发源选择 Serial Start,可根据需求设置串口波特率、串口数据位、串口校验位、串口停止位和串口启动触发,如图 3-47 所示。

图3-47 串口触发参数设置

11. 若触发源选择 Self Trigger,需要设置自触发时间和自触发数,如图 3-48 所示。点击"执行"自触发开始,则设备将以设置的自触发时间为周期执行触发动作,当触发次数达到设定的自触发数时自动停止触发;在设备执行自触发时,点击"执行"自触发停止,可使设备停止自触发动作。

图3-48 自触发参数设置

道说明

- 自触发数设置为 0 时表示可以无限次触发,直到执行自触发停止。
- 自触发时间设置时应大于实际帧率的倒数,若小于则会将自触发时间强制设置为实际帧率的倒数。
- 设备支持的功能和设备型号以及固件程序有关,具体请以实际参数为准。

3.6.2 停止触发设置

设备可通过 TCP、UDP、IO、串口、超时控制以及条码个数这 6 种方式停止触发。根据实际需要,可以设置超时停止触发以及条码个数停止触发的相关参数,如图 3-49 所示。

图3-49 停止触发使能

TCP 停止触发

TCP 停止触发主要提供支持外部第三方使用 TCP 协议,控制设备停止出图的功能。

在配置 TCP 停止触发使能后,设备开启 TCP 的服务端,开始侦听外部 TCP 连接,接收外部正确的停止触发的控制指令后,则停止触发。如果指令不匹配或当前为未开启触发模式,则不处理。

当开启 "TCP 停止触发使能"后,需要设置相关参数,如图 3-50 所示。

- TCP 停止触发使能:需要使用 TCP 停止触发功能时,开启该参数。
- TCP 触发端口:可设置 TCP 触发服务端口,默认为"2001",2001端口为 TCP 独有端口号。
- TCP 停止触发:可设置 TCP 结束触发命令,默认为 "stop"。

图3-50 TCP 停止触发

UDP 停止触发

UDP 停止触发主要提供支持外部第三方使用 UDP 协议、控制设备停止出图的功能。

在配置 UDP 停止触发使能后,设备开启的 UDP 服务端,接收外部的 UDP 指令。接收外部正确的停止触发的控制指令后,则停止触发。如果指令不匹配或当前为未开启触发模式,则不处理。

当开启 "UDP 停止触发使能"时,需设置相关参数,如图 3-51 所示。

- UDP 停止触发使能:需要使用 UDP 停止触发功能时,开启该参数。
- UDP 触发端口:可设置 UDP 触发服务端口,默认为"2002",2002 端口为 UDP 独有端口号。
- UDP 停止触发:可设置 UDP 结束触发命令,默认为 "stop"。

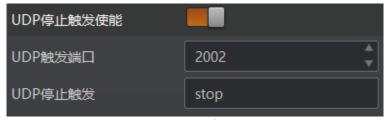


图3-51 UDP 停止触发

I/O 停止触发

I/O 停止触发,即通过外触发或者软触发,能够控制设备停止出图。

配置 I/O 停止触发使能时,选择对应的信号线或软触发,即可在有外触发信号满足条件或者执行"软触发停止"时结束触发,停止设备出图。

当开启"I/O停止触发使能"时,需设置相关参数,如图 3-52 所示。

- IO 停止触发使能:需要使用 I/O 停止触发功能时,开启该参数。
- IO 停止触发源选择:可选择停止触发的信号来源,有 LineIn0、LineIn1、LineIn2、SoftwareTriggerEnd 4 种。
 - 结束触发方式: 当 IO 停止触发源选择 LineIn0/1/2 时,可设置触发源的触发极性,有上升沿和下降沿两种。若输入信号的触发源和 IO 停止触发的触发源是同一个,则不需要选择。

图3-52 I/O 外触发停止

- 当 IO 停止触发源选择 SoftwareTriggerEnd 时,可通过单击"执行"按钮停止触发,如图 3-53 所示。

图3-53 I/O 软触发停止

Serial 停止触发

Serial 停止触发主要提供支持外部第三方使用 Serial 协议,控制设备停止出图的功能。

在配置 Serial 停止触发使能后,设备接收外部的 Serial 指令。接收外部正确的停止触发的控制指令后,则停止触发。如果指令不匹配或当前为未开启触发模式,则不处理。

Trigger Mode 参数为 On 时,通过 Stop Trigger Control 属性设置相关参数,如图 3-54 所示。

● 串口停止触发使能:需要使用串口停止触发功能时,开启该参数。

- 串口停止触发:设置 Serial 停止触发的命令,默认为 "stop"。
- 串口波特率:设置串口波特率,默认为"9600"。
- 串口数据位:设置串口数据位长度,默认为"8"。
- 串口校验位:设置串口奇偶校验,默认为"No Parity",也可设置为"Odd Parity", "Even Parity"。
- 串口停止位:设置串口停止位长度,默认为"1",也可设置为"2"。

图3-54 串口停止触发

超时停止触发

超时停止触发功能是指设备输出数据时,当输出时间超出设定的"最大输出限制时间"时,将自动忽略后续触发信号,设备停止出图。该功能仅在运行模式为 Normal 模式时才能使用。

关于超时停止触发的参数设置,具体操作如下:

确保 Trigger Mode 参数为 On 时,开启超时停止触发使能,并设置设备数据的最大输出限制时间,取值范围为 0~10000,单位为 ms,如图 3-55 所示。

图3-55 超时停止触发

条码个数停止触发

条码个数停止触发功能是指设备输出数据时,最终输出的条码数受条码个数设置的约束。该功能仅在运行模式为 Normal 模式时才能使用,具体情况如下:

● 当输出的条码数小于设定的"停止触发最小条码个数"时,设备持续输出条码及相 关数据。

- 当输出的条码数达到设定的"停止触发最大条码个数"时,设备将停止输出条码及相关数据。
- 当输出的条码数处于最小条码个数和最大条码个数之间时,将根据触发信号进行读码,并输出条码及相关数据。
- 当最小条码个数与最大条码个数设置相同时,输出的条码数达到设置的条码个数 后,设备停止输出条码及相关数据。

关于条码个数停止触发的参数设置,具体操作如下:

确保 Trigger Mode 参数为 On 时,开启条码个数停止触发使能,并根据需求设置停止触发的条码个数,如图 3-56 所示。

图3-56 条码个数停止触发

3.6.3 输出

设备光耦输出信号,可用于控制闪光灯、喇叭、报警灯等外部设备。

输出部分可设置设备的输出端口、输出反转、输出事件,如图 3-57 所示。

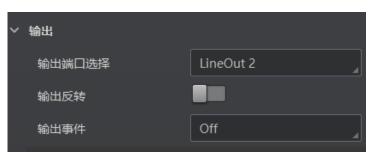


图3-57 输出参数设置

设置输出信号的方法如下:

- 1. 输出端口选择处根据实际需求下拉选择对应的触发输出信号,可选 LineOut 0/1/2。
- 2. 输出事件处根据实际使用需求下拉选择对应的事件源, 读码设备会根据选择的事件源输出触发信号。具体事件源介绍如下:
 - Off: 无事件源

Acquisition Start Active: 开始采集Acquisition Stop Active: 结束采集

- Frame Burst Start Active: 帧开始触发采集

- Frame Burst Stop Active: 帧结束触发采集

Exposure Start Active:曝光开始采集Soft Trigger Active:软触发同步采集Hard Trigger Active:硬触发同步采集

Counter Active: 计数输出Timer Active: 定时输出

No Code read: 没读取到条码Read Success: 读取到条码

- Light Strobe Long: 灯源开启频闪模式

- ComtrastSuccess: 数据对比成功

- ComtrastFail: 数据对比失败

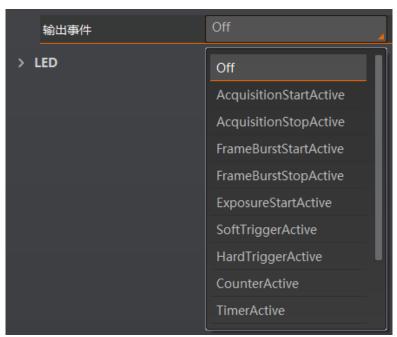


图3-58 光耦输出事件源

i 说明

设备支持的功能和设备型号以及固件程序有关,具体请以实际参数为准。

- 3. 选择不同的输出事件源,需要设置的参数有所差别。
 - 输出事件源除了"Timer Active"和"Light Strobe Long"外,当选择其他事件源时,均可根据实际情况设置输出信号延迟时间和持续时间。输出延迟时间为输出信号延迟输出事件的时间,输出持续时间为输出信号持续的时长,如图 3-59 所示。

图3-59 光耦输出设置

- 当输出事件源选择 "Exposure Start Active"时,除输出信号的延迟时间和持续时间 参数外,还可以设置输出提前时间。输出提前时间为输出信号提前输出的时间,如图 3-60 所示。

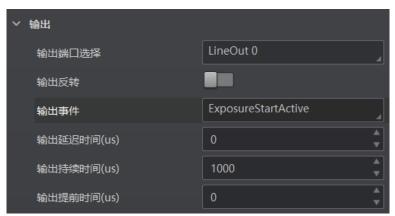


图3-60 曝光开始

- 当输出事件源选择 "Soft Trigger Active"输出时,除输出信号的延迟时间和持续时间参数外,还需要通过 IO 软触发处的"执行"按钮提供输出事件,如图 3-61 所示。

图3-61 软触发

- 当输出事件源选择"Hard Trigger Active"时,除输出信号的延迟时间和持续时间参数外,还需要设置外部触发信号的来源。通过硬触发来源选择使用的输入信号源,可选 LineIn 0/1/2;通过硬触发激活设置输入信号的触发方式,可以选择 Rising Edge(上升沿)和 Falling Edge(下降沿)两种,如图 3-62 所示。

图3-62 外部触发

- 当输出事件源选择"TimerActive"时,除输出信号的持续时间参数外,还需要设置输出的周期时间,如图 3-63 所示。

图3-63 定时器触发

- 当输出事件源选择 "LightStrobeLong"时,无需设置其他参数。
- 4. 若需要设备输出与此刻相反的信号,则启用输出反转功能,如图 3-64 所示。

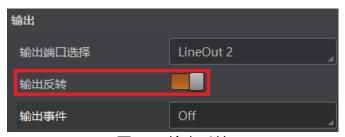


图3-64 输出反转

3.7 数据处理

设备可通过"数据处理"模块对设备的过滤规则和输出数据处理进行设置。

3.7.1 过滤规则

过滤规则可对设备读取的条码根据设置的规则做一定的过滤,分为普通过滤和正则表达式过滤两种模式。

普通过滤

当过滤模式为"Normal"时,可设置如下过滤参数:

- 立即输出模式启用: 开启该模式后,将实时输出条码信息。
- 最小输出时间:设置需达到最小有效时间后,方能输出条码。
- 数字过滤: 开启该功能则输出的条码信息为纯数字信息,非数字类信息会被过滤。
- 最大条码输出长度:可设置允许输出的最大条码长度。
- 条码位数偏移量:条码过滤规则,比如一长串条码,用户可以设置从第几个字符开始输出。
- 以特定字符开始的数据:开启该功能时,只输出起始位为特定字符的条码信息。若不一致,则条码信息被过滤。开启时,需要在"以..开始"参数中输入特定字符的内容。
- 在条码中包含特定字符:开启该功能时,只输出包含特定字符的条码信息。若不包含,则条码信息被过滤。开启时,需要在"特征"参数中输入特定字符的内容。
- 排除条码中的特定字符:开启该功能时,只输出不包含特定字符的条码信息。若包含,则条码信息被过滤。开启时,需要在"特征"参数中输入特定字符的内容。
- 正则表达式筛选器使能:开启该功能时,只输出包含指定正则表达式内容的条码信息。若不包含,则条码信息被过滤。开启时,需要在"正则表达式过滤规则"参数中设置正则表达式的内容。
- 最小条码长度: 若条码长度低于该参数的数值,则不能解析条码的内容,范围为 1~256。
- 最大条码长度: 若条码长度高于该参数的数值,则不能解析条码的内容,范围为 1~ 256。
- 读取次数阈值: 当同一个条码读取结果相同的次数超过该数值时,认为此为有效条码且输出结果;当低于该数值时,则认为此为无效条码且不输出结果。

图3-65 普通过滤模式过滤规则参数

道说明

- 立即输出模式启用、最小输出时间、最大条码输出长度和条码位数偏移量等 4 个参数需在运行模式为 "Normal"且开启触发模式时,方可进行设置。
- 不同固件版本的设备普通过滤模式下可设置的参数有所差别,请以设备实际参数为 准。

正则表达式过滤

设备支持通过正则表达式对条码进行过滤,具体操作步骤如下:

- 1. 在过滤规则下,过滤模式参数选择为"Regular Expression"。
- 2. 在正则表达式参数组号中选择一个正则表达式名称,目前可选 order1~order10,即可同时设置 10 条正则表达式过滤规则,满足其中 1 条即可通过过滤。
- 3. 在正则表达式筛选器参数中输入正则表达式内容,如图 3-66 所示。

图3-66 设置正则表达式过滤规则

- 4. 设置最小条码长度、最大条码长度以及读取次数阈值参数,具体参数含义请参考普通过滤模式中相关参数。
- 5. 需要设置多条正则表达式过滤规则时, 重复第 2-3 步即可。

i 说明

不同固件版本的设备正则表达式过滤模式下可设置的参数有所差别,请以设备实际参数为准。

3.7.2 数据处理设置

数据处理部分可以对设备输出的条码结果进行设置。选择的通信协议不同,具体参数内容有所差别。具体通信协议如何设置请查看 3.9 通信配置章节。

道 说明

不同型号设备可设置的通信协议有所不同,请以具体型号设备为准。

SmartSDK

当通信协议选择 SmartSDK 时,数据处理参数如下:

- 排序规则: 可根据实际需求选择输出结果的排序规则,支持多种排序规则。
- 本地存图模式:可选择 Off 或 NoRead。Off 模式下不存图; NoRead 模式下,设备在 noread 时存图,并可设置其他相关参数。
- 本地图片类型:存图格式,可选择 JPEG 或 BMP。
- 本地覆盖策略:设置存图过量后的覆盖方式。
 - Off: 不覆盖, 保持存图直至磁盘写满;
 - Max Count: 保存指定数量的图片,达到指定数量后不再存图;

- Loop Max Count: 为保存指定数量的图片后进行循环覆盖,即达到指定数量后,删除最早的一张图片同时保存最新的一张图片,存图总量保持不变;
- Reserve Space:在保持磁盘安全存储空间的情况下保持存图。若磁盘存储空间低于设定值,则删除图片,直至磁盘空间大于安全空间。
- 本地覆盖最大计数:本地覆盖策略选择 Max Count 和 Loop Max Count 时需设置。
- 本地图片名称格式化标志符添加:点击右侧的 + 选择图像名称包含的内容,可多选。所有已选择的内容显示在下方显示框中,也可直接在此输入图像名称需要包含的内容。
- 本地时间格式:选择文件名中时间的命名类型。
- 本地存图策略: 共有 4 种策略可供选择,分别为 Recent Frame(最新帧)、All Frames (所有帧)、Range Frames(范围帧)和 Specific Frame(指定帧)。选择 "Specific Frame" 时需要设置本地图片序号参数。

图3-67 SmartSDK 协议的数据处理

道说明

本地存图功能需在 Normal 模式且触发开启状态下使用。

FTP

当通信协议选择 FTP 时,数据处理的具体参数如下:

- 排序规则: 可根据实际需求选择输出结果的排序规则, 支持多种排序规则。
- 本地存图模式:可选择 Off 或 NoRead。Off 模式下不存图; NoRead 模式下,设备在 noread 时存图,并可设置其他相关参数。
- 本地图片类型: 存图格式, 可选择 JPEG 或 BMP。
- 本地覆盖策略:设置存图过量后的覆盖方式。
 - Off: 不覆盖, 保持存图直至磁盘写满;
 - Max Count: 保存指定数量的图片, 达到指定数量后不再存图;
 - Loop Max Count: 为保存指定数量的图片后进行循环覆盖,即达到指定数量后,删除最早的一张图片同时保存最新的一张图片,存图总量保持不变;
 - Reserve Space:在保持磁盘安全存储空间的情况下保持存图。若磁盘存储空间低于设定值,则删除图片,直至磁盘空间大于安全空间。
- 本地覆盖最大计数:本地覆盖策略选择 Max Count 和 Loop Max Count 时需设置。
- 本地时间格式:选择文件名中时间的命名类型。
- 本地存图策略: 共有 4 种策略可供选择,分别为 Recent Frame(最新帧)、All Frames (所有帧)、Range Frames(范围帧)和 Specific Frame(指定帧)。选择 "Specific Frame" 时需要设置本地图片序号参数。
- 输出重传使能:开启该功能,则允许数据重传。重传次数通过"输出重传数量"参数设置。若数据重传达到设置的数值仍失败,则放弃重传。
- FTP 图片名称格式化标志符添加:点击右侧的 可选择 FTP 图片名称包含的内容,,可多选。所有已选择的内容将显示在下方显示框中,也可直接在此输入图片名称需要包含的内容。
- FTP 传输条件:选择数据上传 FTP 的条件,共有 3 种条件可供选择,分别为 All(始终上传)、Read Barcode(读到码才上传)和 No Read Barcode(未读到码才上传)。
- FTP 传输结果包含:选择上传 FTP 的内容,共有 3 种内容可供选择,分别为 Just Result(只上传条码结果)、Just Picture(只上传图片)和 Result and Picture(上传条码结果和图片)。
- FTP 时间格式:选择文件名中时间的命名类型。
- FTP 结果前缀:选择文件名前缀,共有 3 种前缀可供选择,分别为 NO(无前缀,所有图像保存在 FTP 根目录下)、RESULT(读到码的图像保存在 Read 目录下,没有读到码的图像保存在 Noread 目录下)和 ALL(所有图像保存在 All 目录下)。

● FTP 存图策略:选择 Noread 时 FTP 存图策略,共有 4 种策略可供选择,分别为 Recent Frame (最新帧)、All Frames (所有帧)、RangeFrames (范围帧)、Specific Frame (指定帧)。选择"Specific Frame"时需要设置 FTP 图像索引参数。

图3-68 FTP 协议的数据处理

本地存图功能需在 Normal 模式且触发开启状态下使用。

其他通信协议

当通信协议选择 TCP Client、Serial、TCP Server、Profinet、MELSEC、EthernetIp、 ModBus、Fins 或 SImp 时,数据处理的具体参数如下:

- 排序规则: 可根据实际需求选择输出结果的排序规则, 支持多种排序规则。
- ROI 无读补齐: ROI Noread 补齐开关,输出的条码根据所在 ROI 区域的索引号排序输出,在条码前添加 ROI 区域索引号,未读到码的区域自动补成 Noread。
- 本地存图模式:可选择 Off 或 NoRead。Off 模式下不存图; NoRead 模式下,设备在 noread 时存图,并可设置其他相关参数。
- 本地图片类型:存图格式,可选择 JPEG 或 BMP。
- 本地覆盖策略:设置存图过量后的覆盖方式。
 - Off: 不覆盖, 保持存图直至磁盘写满;
 - Max Count:保存指定数量的图片,达到指定数量后不再存图;
 - Loop Max Count: 为保存指定数量的图片后进行循环覆盖,即达到指定数量后,删除最早的一张图片同时保存最新的一张图片,存图总量保持不变;
 - Reserve Space:在保持磁盘安全存储空间的情况下保持存图。若磁盘存储空间低于设定值,则删除图片,直至磁盘空间大于安全空间。
- 本地覆盖最大计数:本地覆盖策略选择 MAX COUNT 和 LOOP MAX COUNT 时需设置。
- 本地图片名称格式化标志符添加:点击右侧的 + 选择图像名称包含的内容,可多选。所有已选择的内容显示在下方显示框中,也可直接在此输入图像名称需要包含的内容。
- 本地时间格式:选择文件名中时间的命名类型。
- 本地存图策略: 共有 4 种策略可供选择,分别为 Recent Frame(最新帧)、All Frames (所有帧)、Range Frames(范围帧)和 Specific Frame(指定帧)。选择 "Specific Frame" 时需要设置本地图片序号参数。
- **输出格式化标志符添加:点击右侧的 + 选择数据格式化的内容,可多选。所有已选择的数据格式化内容将显示在下方显示框中,也可直接在此输入需要格式化的内容。
- **格式化检查:点击"执行"检查格式化内容。
- **格式化检查结果:反馈格式化检查结果,成功显示<success>,失败打印相应字符 串。
- **输出无读使能:传输数据中若未识别到条码是否输出相应的内容,开启后可设置 具体内容。
- **输出无读取:若未识别到条码,可自行设置相应的输出内容,默认为 NoRead。
- **输出开始: 传输数据中开始部分的内容, 可根据实际需求设置特定的内容。

- **输出结束: 传输数据中结束部分的内容, 可根据实际需求设置特定的内容。
- **输出条形码输入字符使能: 开启后可输出条形码输入字符。
- **输出条形码换行符使能: 开启后可输出条形码换行符。

图3-69 TCP 等协议的数据处理

本地存图功能需在 Normal 模式且触发开启状态下使用。

3.8 比对控制

比对控制部分可设置条码数据内容或连续条码规则,在开启比对功能后,设备将读取到的数据与预设数据进行比对,并输出比对结果。比对结果将作为设备输出触发信号的事件源,有关事件源的具体介绍请见 3.6.3 输出章节。

数据比对功能提供常规比对和连号比对两种方式,选择不同方式时,需要设置的参数 有所差别。

数据比对功能需在 Normal 模式下使用。

3.8.1 常规比对

常规比对是指通过预设条码数据内容,并将读取到的数据与预设数据进行比对,从而得到比对结果。具体设置方法如下:

- 1. 在比对控制下, 开启比对使能。
- 2. 比对规则参数选择 Regular。
- 3. 在起始位置参数中设置开始比对的初始位,即从数据的第几位开始进行比对。
- 4. 在对比字符数参数中设置参与比对的范围,即从初始位起一共比对几位。
- 5. 在通配符参数中设置条码字符串,如图 3-70 所示。

图3-70 常规比对参数

3.8.2 连号比对

连号比对是指通过设置连续的条码规则,并将读取到的数据与预设规则进行比对,判断是否满足该规则,从而得到比对结果。具体设置方法如下:

- 1. 在比对控制下, 开启比对使能。
- 2. 比对规则参数选择 Consecutive Number。
- 3. 在起始位置参数中设置开始比对的初始位,即从数据的第几位开始进行比对。
- 4. 在对比位数参数中设置参与比对的位数,即从初始位起一共比对几位。

- 5. 在步长参数中设置增量值,即每次比对后将预设值根据增量值进行递增或递减,然后再进行下一轮的比对。若递增或递减后的数值超出设置的对比位数,则预设值全为 0。
- 6. (可选)通过点击比对重置参数处的"执行",可进行比对重置。重置后将以读取到的第一个码为预设值开始进行比对。
- 7. 基础值中显示当前开始进行比对的预设值。

图3-71 连号比对参数

以起始位置为 3,对比位数为 2,步长为 2 举例,连号比对的规则如下:

- 首次读到码 ur96k. 得到预设值 96。预设值递增. 得到 96+2=98。
- 第二次读到码 yr98kjkfd,比对成功,为连续码,则输出对比成功事件。此时预设值再递增,得到 98+2=00。
- 第三次读到码 kl99fjkd,比对失败,非连续码,则输出对比失败事件。此时预设值 不再递增,直到下一次比对成功才再次递增。
- 第四次读到码 kl00djf, 比对成功, 为连续码, 则输出对比成功事件。此时预设值再递增, 得到 00+2=02。
- ……以此类推

3.9 诵信配置

设备可通过"通信配置"模块设置通信协议相关的参数。通信协议与设备运行模式有 关系。

- 当运行模式为 Raw 或 Test 模式时,设备只支持 SmartSDK 的方式且无需设置相关参数。
- 当运行模式为 Normal 模式时,支持 SmartSDK、TCP Client、Serial、FTP、HTTP、TCP server、Profinet、MELSEC、EthernetIp 和 ModBus 共 10 种通信方式,可选择不同的通信协议并设置相关参数。

3.9.1 SmartSDK 方式

如果用我司提供的 SDK 进行二次开发和结果数据接收,建议选用 SmartSDK 方式。选择 SmartSDK 方式后,启用 SmartSDK 协议,可设置的参数如下:

● SmartSDK 协议:启用该参数后,设备通过 SmartSDK 方式输出数据。

● 编码 JPG: 启用该参数后,设备会对图像数据进行 JPG 压缩。

● JPG 质量:可设置 JPG 图像的压缩质量,设置范围为 50~99。

图3-72 SmartSDK 方式

3.9.2 TCP Client 方式

通信协议选择 TCP Client 时,可设置的参数如下:

● 输出结果缓冲区: 需要使用输出结果缓冲区时,需开启该功能。

● 输出结果缓冲区数量:开启缓冲区后,可以根据需求设置缓冲区的数量。

● TCP 协议:开启该参数后,设备通过 TCP/IP 的方式输出数据。

● TCP 目的地址:输入接收数据的 PC 的 IP 地址。

● TCP 目的端口:输入接收数据的 PC 的端口号。

图3-73 TCP Client 方式

道 说明

设备支持的功能和设备型号以及固件程序有关,具体请以实际参数为准。

3.9.3 Serial 方式

通信协议选 Serial 时,可设置的参数如下:

● 串口通讯协议:开启该参数后,设备通过 RS-232 串口的方式输出数据。

● 串口波特率:设置接收数据 PC 的串口波特率。

● 串口数据位:设置接收数据 PC 的串口数据位。

● 串口校验位:设置接收数据 PC 的串口校验位。

● 串口停止位:设置接收数据 PC 的串口停止位。

图3-74 Serial 方式

3.9.4 FTP 方式

通信协议选 FTP 时,可设置的参数如下:

● FTP 协议: 启用该参数后,设备通过 FTP 的方式输出数据。

● FTP 主机地址:输入接收数据的 FTP 的主机 IP 地址。

● FTP 主机端口: 输入接收数据的 FTP 的主机端口号。

● FTP 用户名:若 FTP 需要用户名和密码才能登录,需要输入 FTP 的用户名。

● FTP 用户密码: 若 FTP 需要用户名和密码才能登录,需要输入 FTP 的密码。

图3-75 FTP 方式

道 说明

设备支持的功能和设备型号以及固件程序有关,具体请以实际参数为准。

3.9.5 TCP Server 方式

通信协议选择 TCP Server 时,可设置的参数如下:

● TCP 服务器使能:开启该参数后,设备通过 TCP 服务器的方式输出数据。

● TCP 服务器端口:输入发送数据的 TCP 服务器的端口号。

图3-76 TCP Server 方式

道说明

设备支持的功能和设备型号以及固件程序有关,具体请以实际参数为准。

3.9.6 Profinet 方式

通信协议选择 Profinet 时,可设置的参数如下:

● Profinet 使能:协议使能开关,开启该参数后,设备通过 Profinet 的方式输出数据。

● Profinet 设备名:设备名称,为设备指定与组态设备名一致且唯一的设备名。

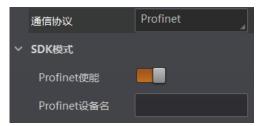


图3-77 Profinet 方式

3.9.7 MELSEC 方式

通信协议选择 MELSEC 时,可设置的参数如下:

- MELSEC 协议使能:MC 协议使能开关,开启该参数后,设备通过 MELSEC 的方式输出数据。
- MELSEC 目的地址: MC 本机端 IP 地址(IPv4),设置设备要连接目标 PLC 的 IP 地址。
- MELSEC 目的端口: MC 目的端口,设置设备要连接目标 PLC 的端口号。
- MELSEC 数据基地址: MC 数据基地址,设置数据区首地址。
- MELSEC 状态基地址: MC 状态基地址,设置状态区首地址。
- MELSEC 网络数: MC 网络编号,设置访问站的网络编号。
- MELSEC PLC 数: MC PLC 编号,设置可编程控制器编号。
- MELSEC 模块 I/O 序号: MC 目标模块 IO 编号,设置目标模块 IO 编号。
- MELSEC 模块站序号: MC 目标模块站号, 目标模块站号。
- MELSEC 超时时间: MC 超时时间,设置在 PLC 的响应返回之前的等待时间。

图3-78 MELSEC 方式

3.9.8 EthernetIp 方式

通信协议选择 Ethernetlp 时,可设置的参数如下:

● Ethernet/IP 协议使能:EthernetIp 协议使能开关,开启该参数后,设备通过 EthernetIp 的方式输出数据。

图3-79 Ethernetlp 方式

3.9.9 ModBus 方式

通信协议选择 ModBus 时,可设置的参数如下:

- ModBus 协议使能: ModBus 协议使能开关,开启该参数后,设备通过 ModBus 的方式输出数据。
- ModBus 类型: 共有 2 种 ModBus 类型可供选择,分别为 server、client。
- ModBus 控制地址空间:设置控制地址空间,默认为 holding register。
- ModBus 控制地址偏移:设置控制地址偏移量,默认为 0。
- ModBus 控制数据个数:设置控制数据数量,默认为 2。
- ModBus 状态地址空间:设置状态地址空间,默认为 input_register。
- ModBus 状态地址偏移:设置状态地址偏移量,地址偏移量,默认为 0。
- ModBus 状态数据个数:设置状态数据数量,默认为 2。
- ModBus 结果数据地址空间:设置结果地址空间,默认为 holding_register。
- ModBus 结果数据地址偏移:设置结果地址偏移量,默认为 4。
- ModBus 字符串字节交换:开启该参数后,字符串字节按大端存储,未开启则按小端存储。

图3-80 ModBus 方式

3.9.10 Fins 方式

通信协议选择 Fins 时,可设置的参数如下:

- Fins 协议使能:开启该参数后,设备通过 Fins 的方式输出数据。
- Fins 通信模式:可选择 UDP 或 TCP。
- Fins 本地端口: 默认为 9600。
- Fins 目标 IP: 设置目标设备的 IP 地址。
- Fins 目标端口:设置目标设备的端口号。
- Fins 数据格式:设置设备通讯读写数据格式,可选 16bit 或 32bit,表示一个寄存器 是 16bit 或 32bit。
- Fins 扫描频率(ms): 设置设备轮询读取服务器控制寄存器的间隔时间,单位为ms。
- Fins 控制区域:默认保存在 DM 区域。
- Fins 控制地址:根据实际情况配置,需保证各个区域不能重叠和覆盖。
- Fins 状态区域:默认保存在 DM 区域。
- Fins 状态地址:根据实际情况配置,需保证各个区域不能重叠和覆盖。
- Fins 结果区域:默认保存在 DM 区域。

通信协议 SDK模式 Fins协议使能 UDP Fins通信模式 Fins本地端口 Fins目标IP 9600 Fins目标端口 16 bit Fins数据格式 Fins扫描频率 (ms) DM Area Fins控制区域 Fins控制地址 DM Area Fins状态区域 Fins状态地址 DM Area Fins结果区域 Fins结果地址

● Fins 结果地址:根据实际情况配置,需保证各个区域不能重叠和覆盖。

图3-81 Fins 方式

3.9.11 SLMP 方式

通信协议选择 SLMP 时,可设置的参数如下:

- SLMP 使能:开启该参数后,设备通过 SLMP 的方式输出数据。
- SLMP 目标地址:设置设备要连接目标 PLC 的 IP 地址。
- SLMP 目标端口:设置设备要连接目标 PLC 的端口号。
- SLMP 数据基地址:设置数据区首地址。
- SLMP 状态基地址:设置状态区首地址。
- SLMP 网络数:设置访问站的网络编号。
- SLMP PLC 数:设置可编程控制器编号。
- SLMP 模块 I/O 序号:设置目标模块 IO 编号。
- SLMP 模块站序号:目标模块站号。
- SLMP 超时时间:设置在 PLC 的响应返回之前的等待时间。

图3-82 SLMP 方式

3.10 配置管理

配置管理模块可对用户参数进行设置,同时还可以重启设备。

3.10.1 用户参数设置

用户参数设置分为保存配置、加载配置和启动配置。

- 保存配置:可将目前设备运行的参数保存到"用户配置 1/2/3"的任意一组参数中。 建议在根据实际情况调整参数后及时进行用户参数保存。
- 加载配置:可将默认或用户配置 1/2/3 的参数组实时加载到设备中。加载默认参数即将设备参数恢复出厂设置。
- 启动配置:可设置设备上电时启动的参数组,可选默认或用户配置 1/2/3 的参数组。
- 时间设置:开启 NTP 校时使能后,设备将根据设置的校时间隔,每隔一段时间校时一次。

图3-83 用户参数设置

设置 NTP 校时的操作步骤如下:

- 1. 点击"时间设置"处的"设置"按钮, 开启 NTP 使能。
- 2. 根据实际情况,设置服务器地址和 NTP 端口号,端口号默认为"123"。
- 3. 根据实际需求,设置 NTP 校时的时间间隔,设置完成后,点击"确定"即可。

图3-84 NTP 时间校准设置

道 说明

使用 NTP 时间校准功能时,请先完成 NTP 校时服务器的相关设置。

3.10.2 重启相机

设备支持软重启操作,可通过单击"配置管理"模块右下角的"重启相机"按钮实现,如图 3-85 所示。

图3-85 重启设备

道 说明

当启用"相机自动工作使能"时,不开启 IDMVS 的情况下,设备也可以工作。

3.11 数据统计

在属性树中的 Statistics Info 属性中,可对设备的读码相关数据进行统计。

道说明

数据统计需在 Normal 模式下使用。

具体操作步骤如下:

- 1. 在属性树中找到 Statistics Info 属性并展开。
- 2. 在 Statistics Mode 属性中选择数据统计范围,可选择 All Frames(统计自设备上电开始到目前的相关数据)或 Latest Frames(统计最近 10 帧的相关数据)。
- 3. 查看相关数据,如图 3-86 所示,具体参数含义如下:
 - Total Frame Number: 总帧数
 - Read Frame Number: 读到码的帧数
 - Noread Frame Number: 未读到码的帧数
 - Read Rate: 读码率,显示的数值为百分比
 - Algo Time Ave: 算法平均耗时,单位为 ms
 - Algo Time Max: 算法最大耗时,单位为 ms
 - Algo Time Min: 算法最小耗时,单位为 ms
 - Read Time Ave: 读码平均耗时,单位为 ms
 - Read Time Max: 读码最大耗时,单位为 ms

Statistics Info

Statistics Mode
All Frames

Total Frame Number
90
Read Frame Number
0
Read Rate
100
Algo Time Ave
176
Algo Time Max
225
Algo Time Min
92
Read Time Ave
176
Read Time Max
225
Read Time Max
225
Read Time Max
92
Reset Statistics
Execute

- Read Time Min: 读码最小耗时,单位为 ms

图3-86 数据统计

4. (可选)点击 Reset Statistics 参数的"Execute",可清空当前统计数据。清空后从设备再次读码时开始统计数据。

3.12 运行诊断

在设备运行过程中,运行诊断功能对崩溃异常、内存使用率和 CPU 使用率等进行检测,并在出现崩溃、内存不足 10%或 CPU 使用率过高时进行提示,相关信息可在属性树中的 Diagnose Event Report 属性下查看,如图 3-87 所示。

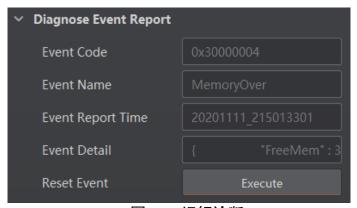


图3-87 运行诊断

点击 Reset Event 参数处的 "Execute", 可清除当前提示的诊断信息。

第4章 I/O 与串口介绍

4.1 I/O 电气特性

4.1.1 输入内部电路图

设备 I/O 信号中 LineIn 0/1/2 为输入信号,内部电路如图 4-1 所示。

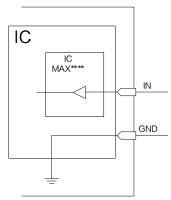


图4-1 输入信号内部电路

输入信号的最大输入电流为 25 mA。

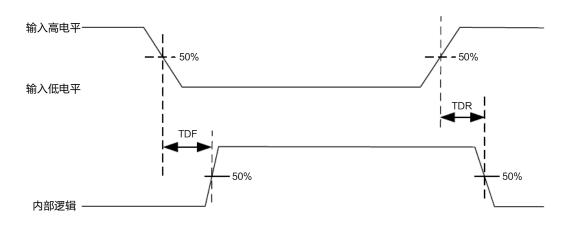


图4-2 输入逻辑电平

输入信号电气特性如表 4-1 所示。

参数名称	参数符号	参数值	
输入逻辑低电平	VL	0 ~ 9 VDC(VCC=24 V)	
		0 ~ 5.4 VDC(VCC=12 V)	
输入逻辑高电平	VH	11 ~ 24 VDC(VCC=24 V)	
		7.56 ~ 12 VDC(VCC=12 V)	
输入下降延迟	TDF	1.3 ~ 3.5 μs	
输入上升延迟	TDR	1.3 ~ 3.5 μs	

表4-1 输入电气特性

道说明

表 4-1 中的 VCC 为设备输入电压。 击穿电压为 36 V,请保持电压稳定。

4.1.2 输出内部电路图

设备 I/O 信号中 LineOut 0/1/2 为输出信号,内部电路如图 4-3 所示。

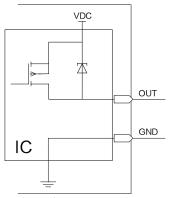


图4-3 输出信号内部电路

输出信号的最大输出电流 200 mA。

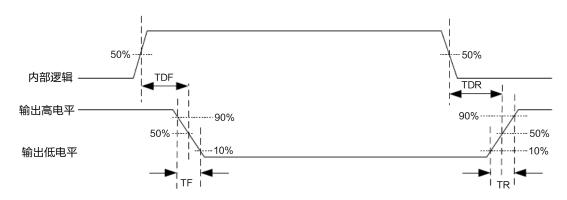


图4-4 输出逻辑电平

外部电压 12 V 且外部电阻 1 KΩ 的情况下,输出信号电气特性如表 4-2 所示。

	秋千年 制田屯	いりに
参数名称	参数符号	参数值
输出逻辑低电平	VL	212 mV
输出逻辑高电平	VH	11.8 V
输出下降延迟	TDF	0.4 μs
输出上升延迟	TDR	0.4 μs
输出下降时间	TF	0.4 μs
输出上升时间	TR	0.4 μs

表4-2 输出电气特性

道 说明

外部电压及电阻不同时,输出信号对应的电流及输出逻辑低电平参数有微小变化。

4.2 I/O 接线图

设备可通过 I/O 接口接收外部输入的信号或输出信号给外部设备。本章节主要介绍 I/O 部分如何接线,接线图中的信号输入以 LineIn 0 为例,信号输出以 LineOut 0 为例。其他接口可根据接线图中的线缆定义,结合 1.4 接口介绍与定义章节进行类推。

4.2.1 输入外部接线图

外部设备的类型不同,设备输入接线有所不同。

● 输入信号为 PNP 设备 推荐使用 330 Ω的下拉电阻。

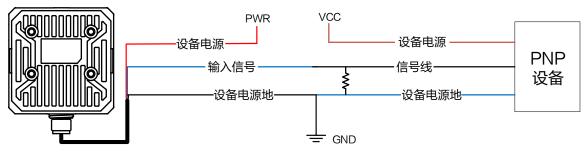


图4-5 输入信号接 PNP 设备

输入信号为 NPN 设备若 NPN 设备的 VCC 为 12 V 或 24 V, 推荐使用 1 KΩ的上拉电阻。

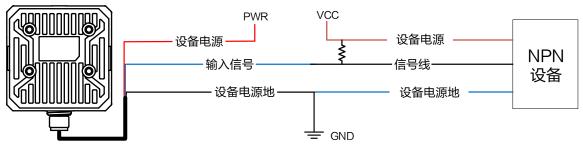
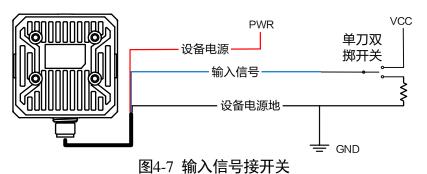



图4-6 输入信号接 NPN 设备

輸入信号为开关推荐使用 330 Ω的下拉电阻。

4.2.2 输出外部接线图

外部设备的类型不同,设备输出接线有所不同。

外部设备为 PNP 型设备 推荐使用 330 Ω的下拉电阻。

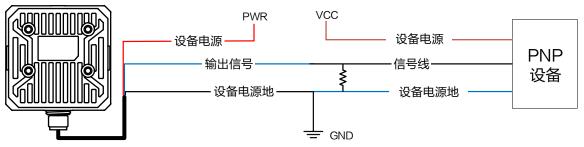
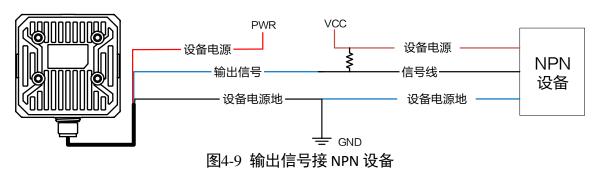



图4-8 输出信号接 PNP 设备

● 外部设备为 NPN 型设备

若 NPN 设备的 VCC 为 12 V 或 24 V, 推荐使用 1 KΩ的上拉电阻。

VCC 的电压值不得高于 PWR 的电压值, 否则设备输出信号会异常。

4.3 RS-232 串口

设备支持 RS-232 输出,具体参数设置请见 Serial 章节。

4.3.1 RS-232 串口介绍

常用的 9-pin 公头 232 串口连接器串口头定义如图 4-10、表 4-3 所示。

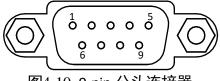
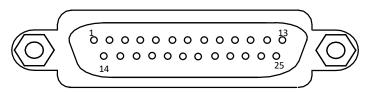


图4-10 9-pin 公头连接器

表4-3 9-pin 公头 232 串口定义

管脚序号	含义	功能描述
2	RX	接收数据
3	TX	发送数据
5	GND	信号地

常用的 25-pin 公头 232 串口连接器串口头定义如图 4-11、表 4-4 所示。



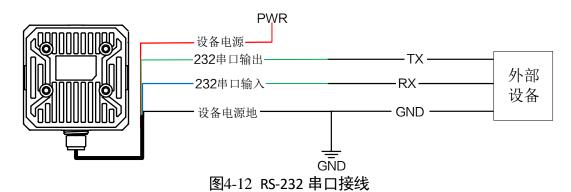

图4-11 25-pin 公头连接器

表4-4 25-pin 公头 232 串口定义

管脚序号	含义	功能描述
2	TX	接收数据
3	RX	发送数据
7	GND	信号地

4.3.2 RS-232 串口接线图

设备的 232 串口与其他带 232 串口的外部设备的接线如图 4-12 所示。

第5章 常见问题列表

表5-1 常见问题列表

问题描述	可能的原因	解决方法
启动 IDMVS 客户端,枚举不到设备	设备未上电	检查设备电源连接是否正常(观察顶部 PWR 灯是否为绿色常亮),确保设备正常 上电
	网络连接异常	检查网络连接是否正常(观察顶部 LNK 灯,绿色闪烁),确保设备网线正常连接,PC 网口与设备在同一网段
预览时画面全黑/ 过暗	补光灯亮度不够	适当增加补光灯亮度或更换更亮的补光灯,适当增大曝光、增益
	曝光、增益等值调节过小	适当增大曝光、增益
调节成像预览时 图像卡顿/帧率低 /画面撕裂	网络线路速度不是 100Mbps	确认网络传输速度是否 100Mbps
预览时没有图像	开启了触发模式,但是没 有给触发信号	给设备触发信号/关闭触发模式
	网络线路速度不是 100Mbps	确认网络传输速度是否 100Mbps

第6章修订记录

版本号	文档编号	日期	修订记录
2.2.0	UD24179B	2021/06/01	● 更新 1.3 产品外观介绍章节,新增六路光源 设备外观
			● 更新 2.5 客户端操作章节,历史记录显示模 块新增读码评分参数
			● 更新 3.1 相机连接章节
			● 新增 3.4.2 曝光章节
			● 新增 3.4.3 增益章节
			● 更新 3.4.5 光源章节,新增六路光源相关参数设置
			●新增 3.4.6 自适应调节章节
			● 更新 3.5.1 添加条码章节,新增一维码类型
			● 更新 3.5.2 算法 ROI 章节,新增批量及棋盘 格算法绘制 ROI 功能
			● 更新 3.5.3 算法参数章节,新增算法参数
			●新增 3.5.4 打码评级章节
			●新增 3.5.5 读码评分章节
			● 更新 3.6.1 输入章节,新增自触发相关参数
			● 更新 3.6.3 输出章节,新增 ContrastSuccess 和 ContrastFail 事件源
			● 更新 3.7.1 过滤规则章节,分为普通过滤和 正则表达式过滤两种模式
			● 更新 3.7.2 数据处理设置章节
			●新增 3.8 比对控制章节
			● 新增 3.9.10 Fins 方式章节
			● 新增 3.9.11 SLMP 方式章节
			● 更新 3.10.1 用户参数设置章节,新增 NTP 校时功能
			●新增 3.11 数据统计章节

ID3000 系列智能读码器 • 用户手册

			●新增 3.12 运行诊断章节
2.1.0	UD21249B	2020/9/15	● 1.3 产品外观介绍章节新增说明 ● 新增 3.3 镜头调焦章节 ● 更新 3.4.5 光源章节内容 ● 更新 3.4.4 轮询章节内容 ● 新增 3.4.7 其他参数章节 ● 3.5.1 添加条码章节新增堆叠码 ● 3.5.2 算法参数章节新增堆叠码算法参数 ● 更新 3.5.2 算法 ROI 章节内容 ● 3.6.2 停止触发设置章节新增超时停止触发和条码个数停止触发 ● 更新 3.7.2 数据处理设置章节内容 ● 更新 3.9 通信配置章节内容
2.0.1	UD20409B	2020/6/30	● 更新 1.2 主要特性章节内容 ● 更新 2.5 客户端操作章节显示历史记录部分 ● 新增 3.4.4 轮询章节,删除原有图像 ROI 内容 ● 修改 3.5.2 算法参数部分 ● 新增 3.5.2 算法 ROI 章节 ● 3.7.2 数据处理设置章节新增 ROI Output Noread Enable 参数说明,以及新增通信方式的参数说明 ● 3.9 通信配置章节新增 MELSEC、EthernetIp和 ModBus 三种通信方式
2.0.0	UD19065B	2020/4/10	优化第3章 功能描述的内容及截图
1.0.0	UD17779B	2019/12/14	初始版本

第7章 获得支持

您还可以通过以下途径获得支持:

网站支持----访问 www.hikrobotics.com 获得相关文档和在线技术支持。

热线支持---通过 0571-86611880 直线联系我们。

邮件支持----反馈邮件到 tech_support@hikrobotics.com, 我们的支持人员会及时回复。

杭州海康机器人技术有限公司 HANGZHOU HIKROBOT TECHNOLOGY CO., LTD. www.hikrobotics.com

技术热线: 0571-86611880